

The Curious Incident of 7 Nov 2011

James Cowie Andrew Hobgood Rajeev Meharwal

APRICOT 2012, New Delhi

Presentation Overview

- Remembering November 7th 2011
- 1. Initial event review: what it wasn't
- 2. Impairment analysis using traceroute
- **3**. Searching for the root cause in BGP
- 4. Lessons for next time

1. Initial event review

A day in the life at Renesys

14:09 UTC, 7 November 2011 (09:09 EDT)

Once again, something "really bad" has happened to the Internet

- Anecdotal reports from #irc, twitter, @outages
- Widespread perception of unreachable destinations, dropped connections, BGP session resets, etc. with no clear common cause

A day in the life at Renesys

•14:24 UTC, 7 November 2011 (T+00h15m) <dtemkin> does renesys have a report ready for this yet? :)

A day in the life at Renesys

- 14:24 UTC, 7 November 2011 (T +00h15m)
 <dtemkin> does renesys have a report ready for this yet? :)
- 13:56 UTC, 7 November 2011 (T -00h13m)

Renesys PreRouting Unit emerges from flotation tanks with initial report

"No, Seriously, what was that?"

- 14:09:30 UTC, 7 November 2011
- Initially, fingers point at Level(3)
 - Then at Tata
 - Gradual recognition that this was a global event affecting more than one or two providers
- Strong transatlantic impacts to traffic
- Dozens of countries visibly affected
- 7.4% of Renesys BGP peers reset

First Symptom: Skyrocketing BGP Rates

- Classic signature of infrastructure instability
- Worms (Nimda 2001, Slammer 2003) used to cause storms like this
- More recently, tickling a router bug or two is the more likely scenario

Pathologies We Expected To Find, But Didn't

Weird ASPATH?

- Mikrotik range-checking bug causes runaway prepends, 255-length paths, tickles Cisco bug (Feb2009)
- Afrinic sends highly prepended paths for new 4-byte ASN, tickles Quagga buffer overflow problem (May2009)

Bad attribute?

- Empty AS4_PATH attribute takes down Cisco IOS XR (Aug2009)
- RIPE RIS sends compliant-but-ugly BGP attribute to all peers at AMS-IX, another Cisco bug corrupts-andforwards, recipients reset sessions (Aug2010)

No obvious trigger messages?

- Was this a new kind of cybernuke?[™]
- When one major vendor has a bug, and the others don't, they act like immune carriers
- Worldwide propagation to every vulnerable router follows within 30-60s
- BGP is a mess

BGP Prefix Advertisements

Newly unstable prefix counts, by country

Unstable prefix counts, by upstream

- Broad-spectrum instability causes impacts in virtually every carrier's customer cone
- customer cone
 No single smoking gun in BGP, as one might expect: no single origin, no transit provider sticks out as the problem

1				
2				
3				
4	12.91.108.25	2.882 ms	2.882 ms	2.914 ms
5	12.122.98.22	11.939 ms	11.932 ms	11.963 ms
6	12.122.31.125	14.638 ms	14.151 ms	14.061 ms
7	12.123.2.129	8.591 ms	8.518 ms	8.598 ms
8	12.248.123.194	18.691 ms	18.562 ms	18.554 ms
9	209.85.248.180	8.941 ms	8.933 ms	8.927 ms
10	209.85.252.2	9.196 ms	9.163 ms	9.126 ms
11	72.14.239.93	15.345 ms	15.697 ms	16.386 ms
12	72.14.236.200	16.387 ms	16.493 ms	16.875 ms
13				
14				

2. Impairment analysis using Traceroute

Distributed Traceroute Dataset

- Developed to complement BGP infrastructure analysis in "broad impact" events like this one
- Dozens of collection points worldwide
- Nearly 1 million IPs traced daily
- ~8 billion ICMP traces collected each year
- "Noncompletion rate" (did the destination fail to respond?) is a rough proxy for global end-to-end connectivity from a given site

Analysis Challenges

- Traceroutes can fail for many reasons
- Analysis limited to the traces that were "in flight" during the time of the event
- Problems close to collectors mask/simulate problems downstream (need diversity!)
- Event itself lasted only minutes, created widespread problems that were hard to distinguish

Traceroute Noncompletion, 7 Nov 2011

Simultaneous worldwide increase in rate of failure of end-to-end traceroutes

- Failure rates double worldwide within 30s
- Impairment decays, lasts 10-20 minutes

Seeking Evidence of Impairment

- Examined 34M traceroutes gathered during the first 15 hours of 7 November
- Identified router interface pairs ("edges") that were reliably crossed by traces before and after the event, but not during the first 10 minutes
- 28,000 out of 2M edges are "highly traversed"
- Try to understand which providers participate in the "highly impaired, highly traversed" subset

Singular Value Decomposition (SVD)

- SVD is a data reduction technique, without loosing an original context.
- Let's examine Taj Mahal. 290 x 450 pixel image matrix via SVD.

Obvious impairment across key ASNs

- Create normed matrix of 30s tracecounts per ASN
- Compute singular value decomposition
- 14:09 event visible as primary source of variance
- Confirms impacts on 6453, 3356, 7922, 7843, 7018

Level(3)'s Impairment

- Analyzed sample of 3,110 heavily traversed edges
- 650 edges correlated strongly with first 4 sing.vec.

Level(3)'s Impairment

- 650 of 3,110 heavily-traversed traceroute edges were severely impacted in the first 10 minutes
 - 549 (84%) are internal Level(3) edges
 - The remainder were spread evenly among 46 peers and customers worldwide
- Heaviest impacts in Los Angeles (29%), San Jose (12%), Frankfurt (11%), London (10%)
 - LAX edges to Hutch, Hanaro, Chunghwa
 - SJC edges to KDDI, KT, Roadrunner
 - Frankfurt to Turk Telekom

Tata's Impairment: similar but lower

- 438 of 1,514 heavily-traversed traceroute edges were severely impacted in the first 10 minutes
 - 305 (70%) are internal Tata edges
 - The remainder were spread evenly among 40 peers and customers worldwide
- Heaviest impacts in New York (16%), Los Angeles (12%), London (12%)
 - But also Singapore, Hong Kong, Mumbai, Tokyo
 - NYC to Roadrunner
 - SJC to Comcast

Traces with responding destination, 30s

Road Runner (AS7843)

3. Searching for the Root Cause in BGP

BGP Prefix Advertisements

"Light Pipes" record the first moments

Don't mistake session resets for signal

BGP Prefix Advertisements (30s)

Primary spike not simply session resets

- 'Echo instability'
 from our peers'
 peers arrive as
 "first light"
 (14:09:30 UTC)
 Our peers start to
 - reset as a **second wavefront** (14:11:22 UTC)

Prefixes in the 7-minute rising edge

 30-second snapshots in IPv4 Hilbertcurve space
 14.05.00

14:05:00 through 14:12:00

Note first light just after 14:09:30

10x zoom; first 30 seconds

- 3-second snapshots in IPv4 Hilbertcurve space
- 14:09:25
 through
 14:09:58

• Examine prefixes in 9s window: 14:09:37-46

Trigger candidates (log(bgp adv/sec))

- Sodetel AS31126 (Beirut, Lebanon)
- Tikona Digital Networks AS45528 (Mumbai, India)
- Ukrainian Academic Res Net AS3255 (Kiev, UA)

Trigger candidates (logscale, 1s adv)

- **Sodetel** AS31126 (Beirut, Lebanon)
- Tikona Digital Networks AS45528 (Mumbai, India)
- Ukrainian Academic Res Net AS3255 (Kiev, UA)

Tikona Briefly Outshines the Rest of the Internet

Tikona Briefly Outshines the Rest of the Internet

Tikona's increasing deaggregation history

113.193.0.0/16 (since Nov 2008) 1.22.0.0/15 (since Jul 2010)

JunOS PSN-2011-08-327 (8 August 2011)

"MPCs (Modular Port Concentrators) installed in an MX Series router may crash upon receipt of very specific and unlikely route prefix install/delete actions, such as a BGP routing update. *The set of route prefix* updates is non-deterministic and exceedingly unlikely to occur. [..] A complex sequence of preconditions is required to trigger this crash."

Tikona's bursty deaggregation of their recently acquired space from 1/8 accidentally recreated the trigger conditions for PSN-2011-08-327.

These updates spread upstream via transit providers Tata, Vodafone India, and Bharti.

Ultimately it hit Level(3) and exploded.

Summary: Could Have Been Worse

- Vendor seems to have downplayed severity of this vulnerability, probability of rare-event loss
- Carriers assessed the odds, may have elected to postpone upgrades
- Law of large numbers is unforgiving
- Trigger appeared, failures manifested, upgrades ensued under less-than-ideal conditions
- *Did not recur on reboot (critically important)*
- Broad impact but limited duration (this time)

www.renesys.com

peering@renesys.com