

Methods for Optimizing Data Capacity

Dr. Yair Shapira yair@divinetworks.com

Methods for optimizing data capacity

- Transparent caching
- Traffic shaping
- □ Video compression
- New method Virtual capacity
- Repetitiveness characteristics in the Internet
- Virtual capacity effects on specific applications
- Examples from production networks

Demand for data is ever growing

- □ Worldwide 34% CAGR
- LATAM 48% CAGR
- □ ME & Africa 52% CAGR
- □ Mobile 92% CAGR
- ARPU stays flat

The challenge:

Economical Bandwidth Expansion

PRESENT METHODS FOR OPTIMIZING DATA CAPACITY

Caching analysis from tier-1 operator

Total Traffic	1100 Gbps Peak Traffic
Part Residential	66,00%
Part HTTP	58,00%
Part Cache relevant	40,00%
Part Cachable	30,00%
Cache Volume	50,5296 Gbps
PoPs	74
Avg Volume/PoP	0,68 Gbps
Core PoPs	12
Avg/Core PoP	4,21 Gbps

- Good QoE for supported applications and content
- Bandwidth savings
- Long track record

- Application & content specific
- Not effective below0.5-1Gbps
- Constraints on routing
- High maintenance Needs to follow Internet evolution (e.g. protocols, formats)
- Legal concerns

Local CDN PoP

- Good QoE for managed content
- Bandwidth savings
- CDN's investment & maintenance

- Only for managed content
- CDNs won't locate PoPs where it's not economical for their customers
- Controlled by CDN, not by ISP

- Explicit control (non-statistical)
- Revenue generator

- Doesn't generate traffic
- High maintenance
- Legally sensitive

- Limitless compression
- Selective video compression is not sensed

- Negative impact on QoE
- Requires high CPU power
- Redundant with ABR
- Redundant with serverbased throttling

NEW METHOD FOR OPTIMIZING DATA CAPACITY – VIRTUAL CAPACITY

Compressor

De-compressor

Compressor

De-compressor

- Operates at bit-stream level.
- Agnostic to protocol and content.
- No spoofing or termination applied.
- Network functions maintained.
- Future proof.
- Legally safe.

Chunk length for this analysis	500 Bytes = 4,000 Bits
Estimated number of clips in YouTube	<i>10,000,000,000 = 10</i> ¹⁰
Average files size in YouTube	5MByte
Chunks in average file in YouTube	$5 \times 10^6 / 500 = 10^4$
Number of chunks in YouTube	$10^{10} \times 10^4 = 10^{14}$
Estimated factor to cover the whole Internet	1,000
Number of chunks in the whole Internet	$10^{14} \times 10^3 = 10^{17}$
Bits required to map all chunks in the Internet	Log ₂ 10 ¹⁷ = 56 bits = 7 Byte
Redundancy ratio	500 Byte / 7 Byte = 71

How Repetitive is the Internet?

Thank You

Dr. Yair Shapira yair@divinetworks.com