

NEW DELHI, INDIA

The BGP DFZ in 2011

Geoff Huston APNIC

"Conventional "wisdom" about routing:

"The rapid and sustained growth of the Internet over the past several decades has resulted in large state requirements for IP routers. In recent years, these requirements are continuing to worsen, due to increased deaggregation (advertising more specific routes) arising from load balancing and security concerns.."

Quoted from a 2012 research paper on routing

"Conventional "wisdom" about routing:

Agenda

In this presentation we will explore the space of the Internet's inter-domain routing system

- We will look at the growth of the BGP routing table over time and some projections for future growth
- Then we'll look at the extent to which more specifics are dominating routing table growth ... or not

I. BGP Growth

The IPv4 Routing Table

The IPv4 Routing Table

The Routing Table in 2010-2011

• Lets look at the recent past in a little more detail...

IPv4 BGP Prefix Count 2010 - 2011

IPv4 BGP Prefix Count 2010 - 2011

IPv4 Routed Address Span

IPv4 Routed Address Span

IPv4 Routed AS Count

IPv4 2011 BGP Vital Statistics

	Jan-11	Jan-12	
Prefix Count	341,000	390,000	+14%
Roots	168,000	190,000	+13%
More Specifics	173,000	200,000	+15%
Address Span	140 /8s	149/8s	+ 6%
AS Count	36,400	39,800	+ 9%
Transit	5,000	5,700	+14%
Stub	31,400	34,100	+ 9%

IPv4 in 2011

- Overall Internet growth in terms of BGP is at a rate of some 12% p.a.
 - This is much the same as 2009 and 2010.
- Table growth has slowed since 20 April 2011, following APINC's IPv4 address run out
- Address span growing more slowly than the table size (address consumption pressures evident?)

IPv6 BGP Prefix Count

IPv6 BGP Prefix Count

IPv6 Routed Address Span

IPv6 Routed Address Span

IPv6 Routed AS Count

IPv6 Routed AS Count

 $\cap \cap$

IPv6 2011 BGP Vital Statistics

	Jan-11	Jan-12	p.a. rate
Prefix Count	4,100	7,759	+ 89%
Roots	3,178	5,751	+ 81%
More Specifics	922	2,008	+118%
Address Span (/32s)	53,415	53,387	+ 0%
AS Count	2,966	4,968	+ 67%
Transit	556	985	+ 77%
Stub	2,343	3,983	+ 70%

IPv6 in 2010 - 2011

- Overall IPv6 Internet growth in terms of BGP is 80% 90 % p.a.
 - 2009 growth rate was ~ 50%.

(Looking at the AS count, if these relative growth rates persist then the IPv6 network would span the same network domain as IPv4 in 4 years time -- mid/late 2016)

BGP Size Projections

- Generate a projection of the IPv4 routing table using a quadratic (O(2) polynomial) over the historic data
 - For IPv4 this is a time of extreme uncertainty
 - Registry IPv4 address run out
 - Uncertainty over the impacts of any after-market in IPv4 on the routing table

which makes this projection even more speculative than normal!

IPv4 Table Size

Daily Growth Rates

Table Growth Model

IPv4 Table Projection

IPv4 BGP Table Size predictions

- Jan 2011 347,000 entries
 - 2012 390,000 entries
 - 2013* 424,000 entries
 - 2014* 463,000 entries
 - 2015* 503,000 entries
 - 2016* 545,000 entries

* These numbers are dubious due to uncertainties introduced by IPv4 address exhaustion pressures.

IPv6 Table Size

Ŵ

Daily Growth Rates

IPv6 Table Projection

IPv6 BGP Table Size predictions

- Jan 2011 4,000 entries
 - 2012 8,000 entries
 - 2013 11,500 entries
 - 2014 16,300 entries
 - 2015 21,800 entries
 - 2016 28,300 entries

Up and to the Right

- Most Internet curves are "up and to the right"
- But what makes this curve painful?
 - The pain threshold is approximated by Moore's Law

Moore's Law

- As a rough rule of thumb, if the rate of growth of the table grows at a rate equal to, or less than Moore's Law, then the unit cost of storing the forwarding table should remain constant
 - Like all rough rules of thumb, there are many potential exceptions, and costs have many inputs as well as the raw cost of the the number of gates in a chip
 - Despite this, Moore's Law still a useful benchmark of a threshold of concern about routing growth

Microprocessor Transistor Counts 1971-2011 & Moore's Law

11111

IPv4 BGP Table size and Moore's Law

V4 BGP Table Size

IPv6 Projections and Moore's Law

V6 BGP Table Size

BGP Table Growth

- Nothing in these figures suggests that there is cause for urgent alarm -- at present
- The overall eBGP growth rates for IPv4 are holding at a modest level, and the IPv6 table, although it is growing rapidly, is still relatively small in size in absolute terms
- As long as we are prepared to live within the technical constraints of the current routing paradigm it will continue to be viable for some time yet

"Conventional "wisdom" about routing:

"The rapid an **Busted** growth of the Internet over the past several decades has resulted in large state requirements for IP routers. In recent years, these requirements are continuing to worsen, due to increased deaggregation (advertising more specific routes) arising from load balancing and security concerns.."

Quoted from a 2012 research paper on routing

BGP Table Growth

- However ... continued scalability of the routing system relies on continued conservatism in routing practices.
- How good are we at "being conservative" in routing?

CIDR and BGP

- To what extent do we still practice "conservative" routing and refrain from announcing more specifics into the routing table?
- Are we getting better or worse at aggregation in routing?
- What is the distribution of advertising more specifics? Are we seeing a significant increase in the number of more specific /24s in the routing table?

II. BGP and More Specifics

An Example:

Prefix	AS Pa	ath					
193.124.0.0/15	4608	1221	4637	3356	20485	2118	?
193.124.0.0/24	4608	1221	4637	3356	20485	2118	?
193.124.1.0/24	4608	1221	4637	3356	20485	2118	?
193.124.2.0/24	4608	1221	4637	3356	20485	2118	?
193.124.3.0/24	4608	1221	4637	3356	20485	2118	?
193.124.4.0/24	4608	1221	4637	3356	20485	2118	?
193.124.5.0/24	4608	1221	4637	3356	20485	2118	?
193.124.6.0/24	4608	1221	4637	3356	20485	2118	?
193.124.7.0/24	4608	1221	4637	3356	20485	2118	?
193.124.8.0/24	4608	1221	4637	3356	20485	2118	?
193.124.9.0/24	4608	1221	4637	3356	20485	2118	?
193.124.10.0/24	4608	1221	4637	3356	20485	2118	?
193.124.11.0/24	4608	1221	4637	3356	20485	2118	?
193.124.12.0/24	4608	1221	4637	3356	20485	2118	?
193.124.13.0/24	4608	1221	4637	3356	20485	2118	?
193.124.14.0/24	4608	1221	4637	3356	20485	2118	?
193.124.15.0/24	4608	1221	4637	3356	20485	2118	?

Origin AS: AS 2118 RELCOM-AS OOO "NPO Relcom"

Who is doing this the most?

www.cidr-report.org

23Dec1 ASnum	1 NetsNow	NetsAggr	NetGain	% Gain	Description
Table 38	38,637	227,303	161,334 4	41.5%	All ASes
AS6389	3,473	223	3,250	93.6%	BELLSOUTH-NET-BLK - BellSouth.net Inc.
AS18566	2,093	412	1,681	80.3%	COVAD - Covad Communications Co.
AS4766	2,492	990	1,502	60.3%	KIXS-AS-KR Korea Telecom
AS7029	2,951	1,521	1,430	48.5%	WINDSTREAM - Windstream Communications Inc
AS22773	1,515	116	1,399	92.3%	Cox Communications Inc.
AS4755	1,512	201	1,311	86.7%	TATACOMM-AS TATA Communications
AS4323	1,622	387	1,235	76.1%	TWTC - tw telecom holdings, inc.
AS28573	1,557	397	1,160	74.5%	NET Servicos de Comunicao S.A.
AS10620	1,719	641	1,078	62.7%	Telmex Colombia S.A.
AS1785	1,863	787	1,076	57.8%	AS-PAETEC-NET - PaeTec Communications, Inc.

BGP Routing Table

More Specifics in the Routing Table

More specifics in the Routing Table

Does everyone see this?

How much address space is announced by more specifics?

Does everyone announce more specifics?

Number of More Specifics Number of ASes

Cumulative Distribution of More Specifics

Is it Everyone?

- 3% of the ASes (1,186 ASes) announce 70% of the more specifics (136,023 announcements)
- 55% of the ASes announce no more specifics
- The top 10 ASes announce 19,163 more specifics

The Top 10 of More Specifics

AS	Aggregates	More Spec	cifics
6389	315	3,155	BELLSOUTH-NET-BLK - BellSouth.net Inc.
7029	188	2,770	WINDSTREAM - Windstream Communications
18566	25	2,068	COVAD - Covad Communications Co.
4766	440	2,043	KIX-AS-KR - Korea Telecom
1785	132	1,731	AS-PAETEC-NET - PaeTec Communications
17974	44	1,672	TELKOMNET-AS2-AP PT Telekomunikasi Indonesia
7545	78	1,551	TPG-INTERNET-AP TPG Internet Pty Ltd
22773	118	1,397	ASN-CXA-ALL-CCI-22773-RDC - Cox Communications
7552	31	1,389	VIETEL-AS-AP Vietel Corporation
4755	127	1,387	TATACOMM-AS TATA Communications

(::**]**::j::j::j

(::)

Are We Getting Any Better?

 Take the daily top 10 Ases over the past 3 years and track the number of more specifics advertised by these Ases over the entire period

Yes ... and No

More Specific AS 2009 - 2011

More Specifics

I BOOM

Are We Getting Any Better?

- Some ASes are effectively reducing the number of more specifics that are advertised into the global routing system
- Some ASes are increasing the number of more specifics
- And some are consistently advertising a significant number of more specifics
- There is no net change in the overall distribution and characteristics of more specifics in the routing system.

Why?

- The reasons why we see more specifics in the routing system include:
 - Different origination ("hole punching" in an aggregate)
 - Traffic engineering of incoming traffic flows across multiple inter-AS paths
 - "protection" against route hijacking by advertising more specifics
 - Poor routing practices

Types of More Specifics

Breakdown of More Specifics

ONFERENCE

m

Types of More Specifics

Breakdown of More Specifics

Address Span of More Specifics

More Specific Advertisements

INDIA

Daily Update Rates

- Do more specifics experience a higher update rate than aggregate advertisements?
- Lets examine the past 3 years of updates and examine the average daily update per advertised prefix count for aggregates and more specifics

Daily Update Rates

hanana

Prefix Instability Rates

Daily Update Rates

• Do more specifics experience a higher update rate than aggregate advertisements?

No!

This result is surprising – it was anticipated that more specifics would show a higher level of dynamic instability, particularly relating to TE more specifics. However nothing is visible in the data that supports this – advertised "root" prefixes are equally likely to be unstable as advertised more specific prefixes.

"Conventional "wisdom" about routing:

"The rapid an **Busted** growth of the Internet over the past several decades has resulted in large state requirements for IP routers. In recent years, these requirements are continuing to worsen, due to inc **Busted** aggregation (advertising more specific routes) arising from load balancing and security concerns.."

Quoted from a 2012 research paper on routing

Problem? Not a Problem?

- Its evident that the global BGP routing environment suffers from a certain amount of neglect and inattention
- Could we do better?

- Yes!

- *Should* we do better?
 - It can be difficult to justify the effort and the cost: the current growth rates of the routing table lie within relatively modest parameters of growth and still sit within the broad parameters of constant unit cost of routing technology
 - On the other hand, we need to recognize that we could do a lot better in terms of eliminating routing noise, and achieve this with with a relatively modest amount of effort

What can YOU do?

- Audit your own advertisements
- Look at your advertisements in relation to the norms of the routing system
- Filter out extraneous more specifics from your external BGP sessions, or explicitly limit the extent of propagation of more specifics to the local radius of TE effectiveness

Thank You

Questions?

