

BGP Techniques for Internet Service Providers

Philip Smith <pfs@cisco.com>

APRICOT 2010

Kuala Lumpur

23rd February - 5th March

Presentation Slides

Will be available on

ftp://ftp-eng.cisco.com

/pfs/seminars/APRICOT2010-BGP-Techniques.pdf

And on the APRICOT 2010 website

Feel free to ask questions any time

BGP Techniques for Internet Service Providers

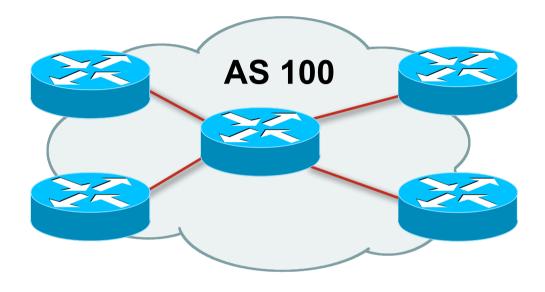
- BGP Basics
- Scaling BGP
- Using Communities
- Deploying BGP in an ISP network

BGP Basics

What is BGP?

Border Gateway Protocol

A Routing Protocol used to exchange routing information between different networks


Exterior gateway protocol

Described in RFC4271

RFC4276 gives an implementation report on BGP RFC4277 describes operational experiences using BGP

The Autonomous System is the cornerstone of BGP
 It is used to uniquely identify networks with a common routing policy

Autonomous System (AS)

- Collection of networks with same routing policy
- Single routing protocol
- Usually under single ownership, trust and administrative control
- Identified by a unique 32-bit integer (ASN)

Autonomous System Number (ASN)

Two ranges

0-65535 (original 16-bit range)

65536-4294967295 (32-bit range - RFC4893)

Usage:

0 and 65535 (reserved)

1-64495 (public Internet)

64496-64511 (documentation - RFC5398)

64512-65534 (private use only)

23456 (represent 32-bit range in 16-bit world)

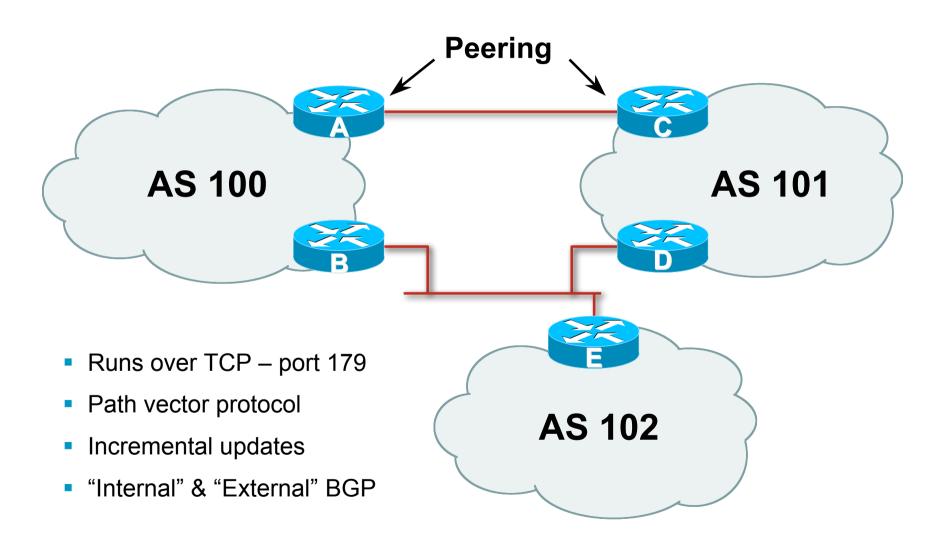
65536-65551 (documentation - RFC5398)

65552-4294967295 (public Internet)

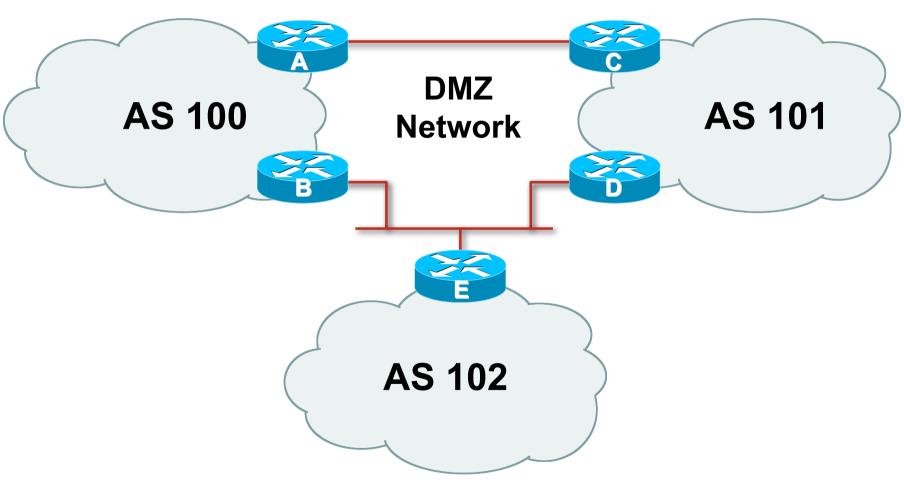
32-bit range representation specified in RFC5396
 Defines "asplain" (traditional format) as standard notation

Autonomous System Number (ASN)

ASNs are distributed by the Regional Internet Registries


They are also available from upstream ISPs who are members of one of the RIRs

Current 16-bit ASN allocations up to 56319 have been made to the RIRs


Around 33500 are visible on the Internet

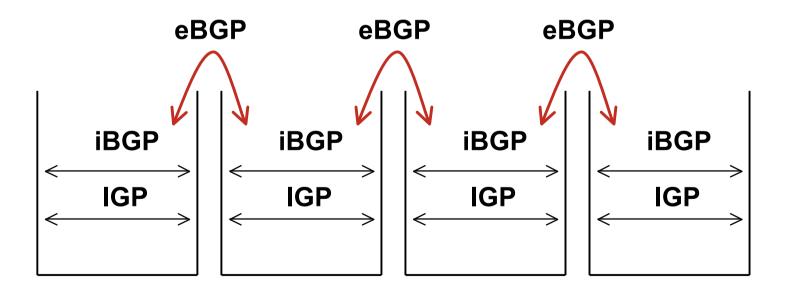
- The RIRs also have received 1024 32-bit ASNs each Out of 450 assignments, around 100 are visible on the Internet
- See www.iana.org/assignments/as-numbers

BGP Basics

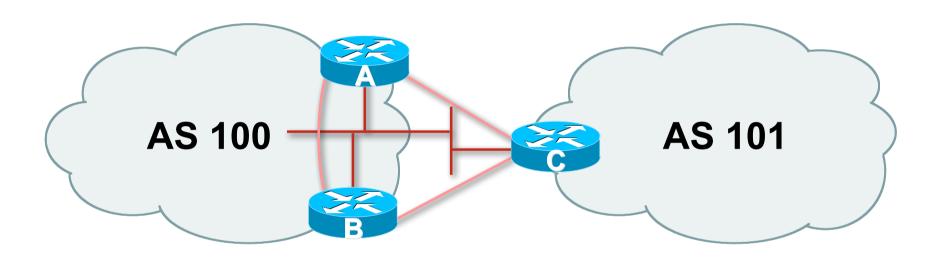
Demarcation Zone (DMZ)

Shared network between ASes

BGP General Operation


- Learns multiple paths via internal and external BGP speakers
- Picks the best path and installs in the forwarding table
- Best path is sent to external BGP neighbours
- Policies are applied by influencing the best path selection

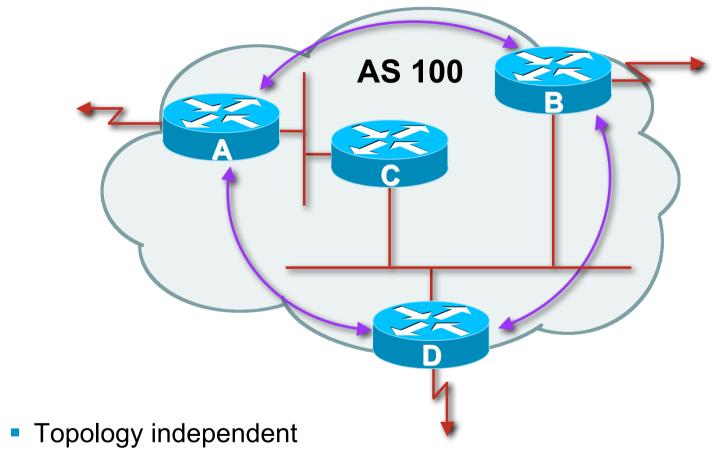
eBGP & iBGP


- BGP used internally (iBGP) and externally (eBGP)
- iBGP used to carry some/all Internet prefixes across ISP backbone ISP's customer prefixes
- eBGP used to exchange prefixes with other ASes implement routing policy

BGP/IGP model used in ISP networks

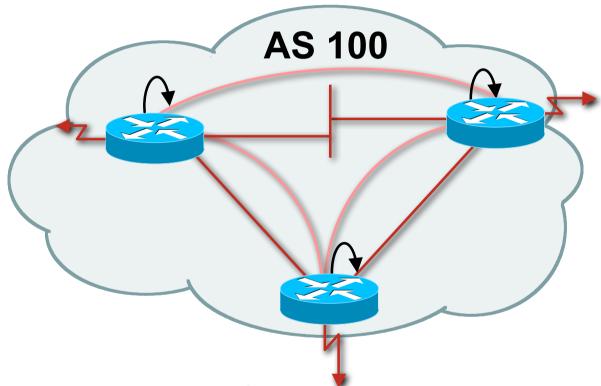
Model representation

External BGP Peering (eBGP)



- Between BGP speakers in different AS
- Should be directly connected
- Never run an IGP between eBGP peers

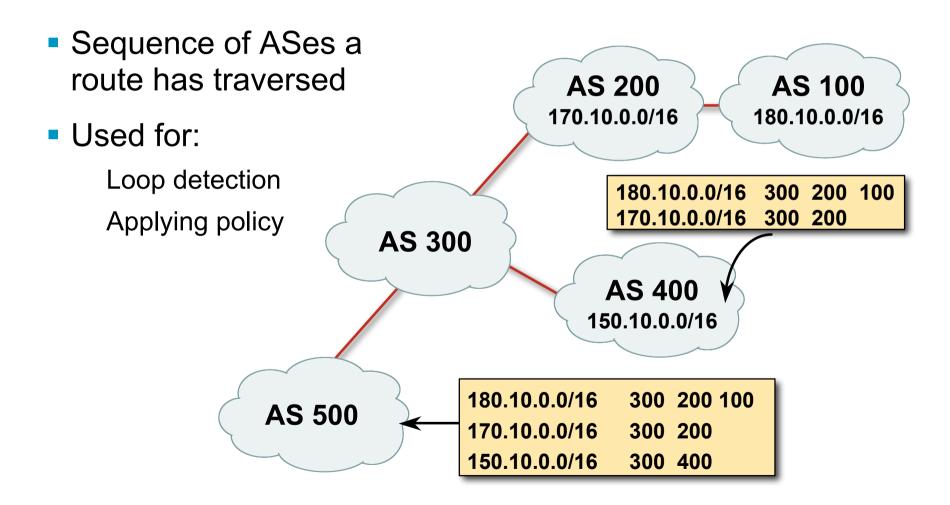
Internal BGP (iBGP)

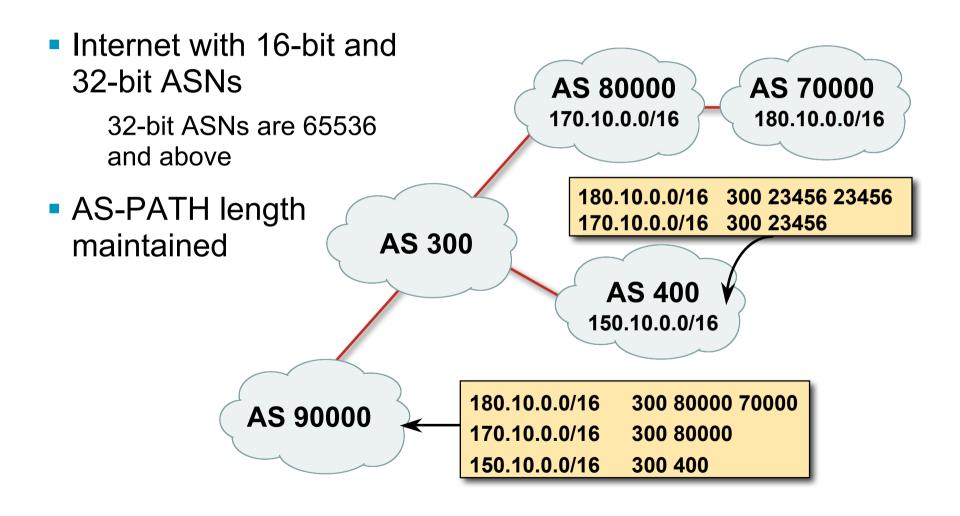

- BGP peer within the same AS
- Not required to be directly connected
 IGP takes care of inter-BGP speaker connectivity
- iBGP speakers must to be fully meshed:
 - They originate connected networks
 - They pass on prefixes learned from outside the ASN
 - They do not pass on prefixes learned from other iBGP speakers

Internal BGP Peering (iBGP)

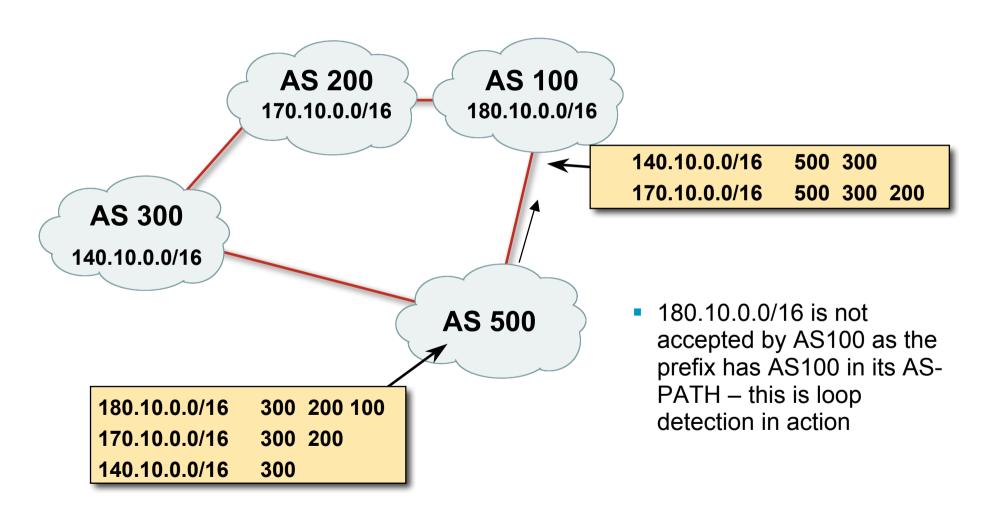
 Each iBGP speaker must peer with every other iBGP speaker in the AS

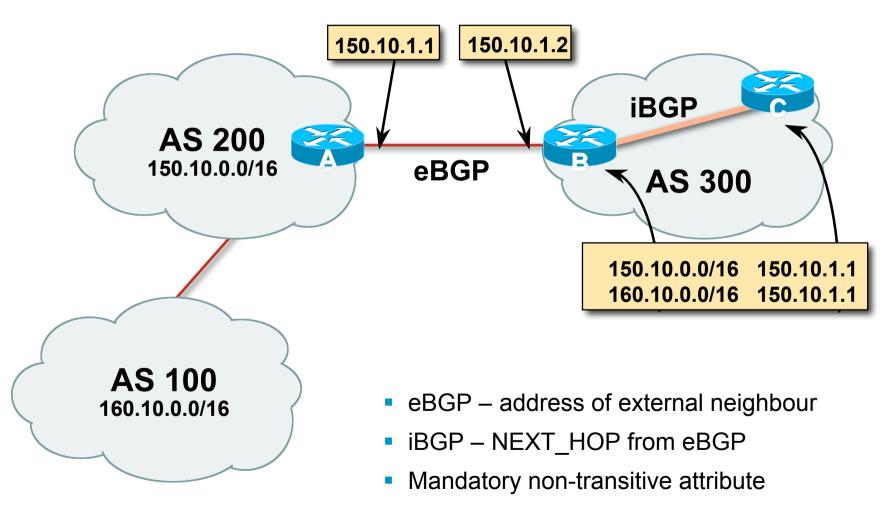
Peering to Loopback Interfaces

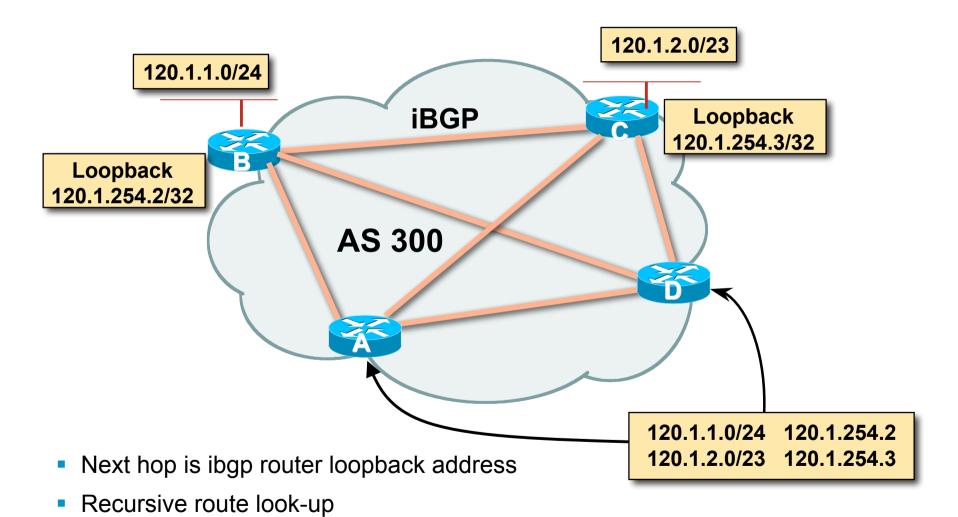

- Peer with loop-back interface
 Loop-back interface does not go down ever!
- Do not want iBGP session to depend on state of a single interface or the physical topology

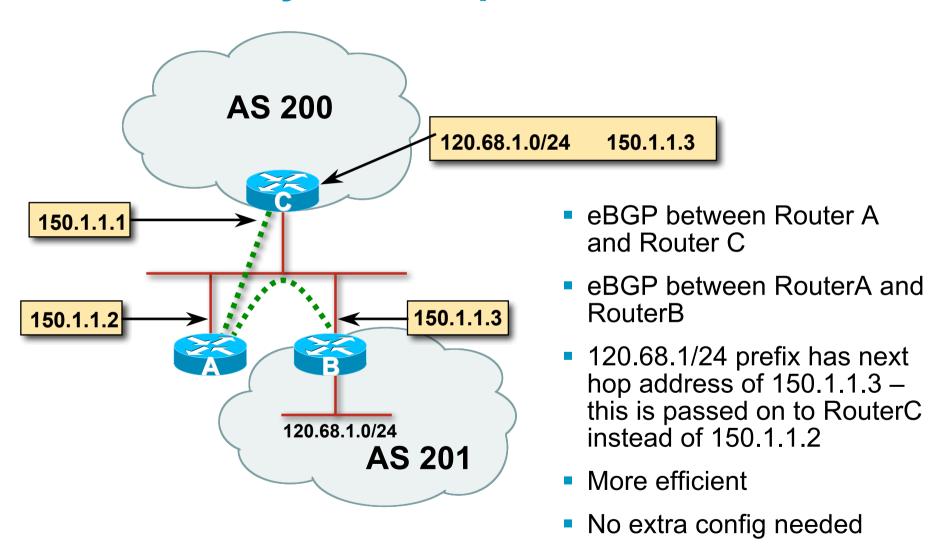

BGP Attributes

Information about BGP


AS-Path


AS-Path (with 16 and 32-bit ASNs)


AS-Path loop detection


Next Hop

iBGP Next Hop

Third Party Next Hop

Next Hop Best Practice

 BGP default is for external next-hop to be propagated unchanged to iBGP peers

This means that IGP has to carry external next-hops

Forgetting means external network is invisible

With many eBGP peers, it is unnecessary extra load on IGP

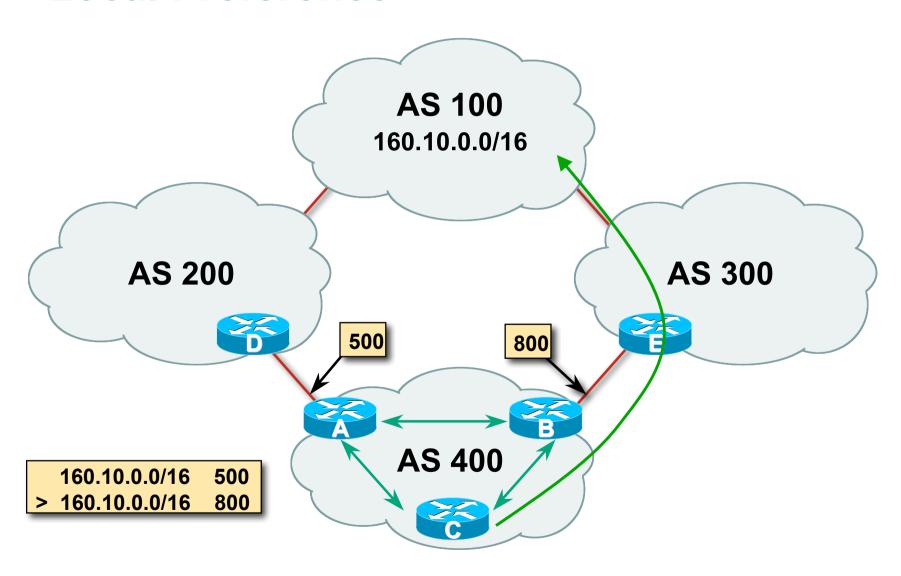
 ISP Best Practice is to change external next-hop to be that of the local router

Next Hop (Summary)

- IGP should carry route to next hops
- Recursive route look-up
- Unlinks BGP from actual physical topology
- Change external next hops to that of local router
- Allows IGP to make intelligent forwarding decision

Origin

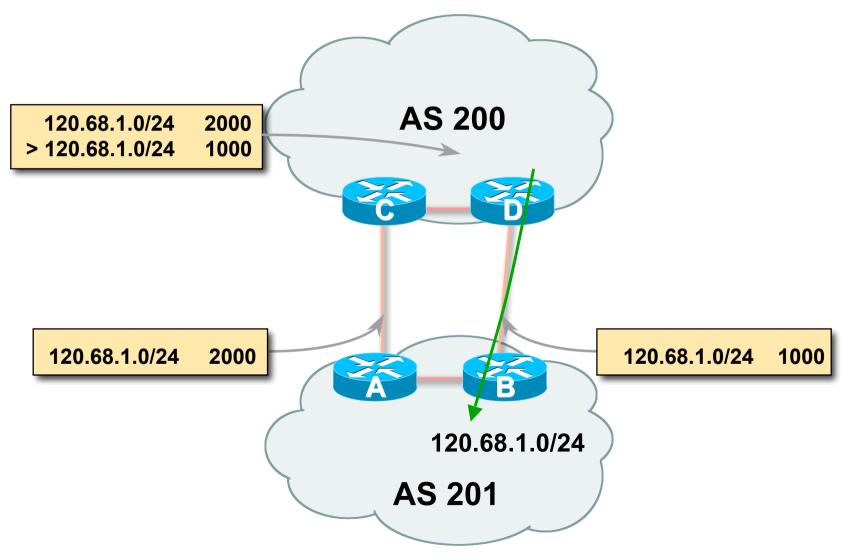
- Conveys the origin of the prefix
- Historical attribute
 Used in transition from EGP to BGP
- Transitive and Mandatory Attribute
- Influences best path selection
- Three values: IGP, EGP, incomplete
 IGP generated by BGP network statement


EGP – generated by EGP

incomplete – redistributed from another routing protocol

Aggregator

- Conveys the IP address of the router or BGP speaker generating the aggregate route
- Optional & transitive attribute
- Useful for debugging purposes
- Does not influence best path selection


Local Preference

Local Preference

- Non-transitive and optional attribute
- Local to an AS non-transitive
 Default local preference is 100 (IOS)
- Used to influence BGP path selection determines best path for outbound traffic
- Path with highest local preference wins

Multi-Exit Discriminator (MED)

Multi-Exit Discriminator

- Inter-AS non-transitive & optional attribute
- Used to convey the relative preference of entry points determines best path for inbound traffic
- Comparable if paths are from same AS
 Implementations have a knob to allow comparisons of MEDs from different ASes
- Path with lowest MED wins
- Absence of MED attribute implies MED value of zero (RFC4271)

Multi-Exit Discriminator "metric confusion"

MED is non-transitive and optional attribute

Some implementations send learned MEDs to iBGP peers by default, others do not

Some implementations send MEDs to eBGP peers by default, others do not

 Default metric varies according to vendor implementation

Original BGP spec (RFC1771) made no recommendation

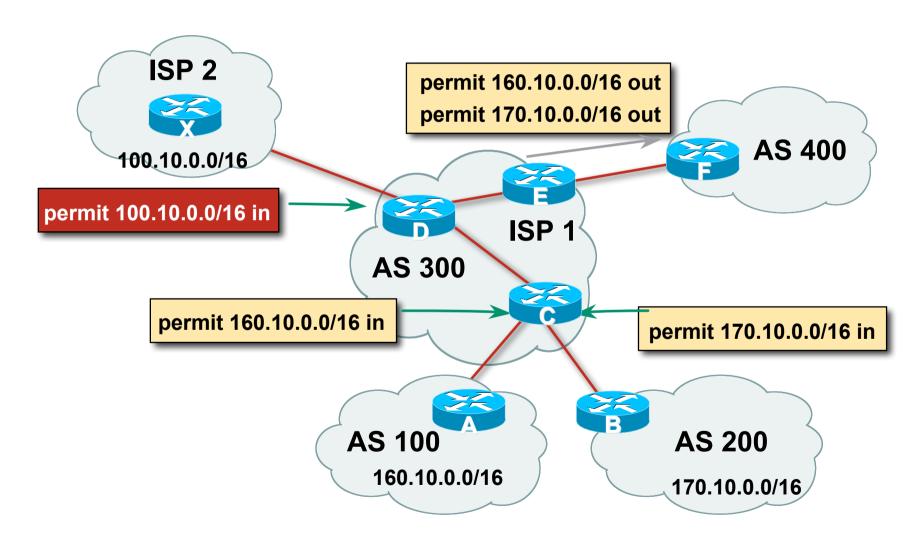
Some implementations said that absence of metric was equivalent to 0

Other implementations said that absence of metric was equivalent to 2³²-1 (highest possible) or 2³²-2

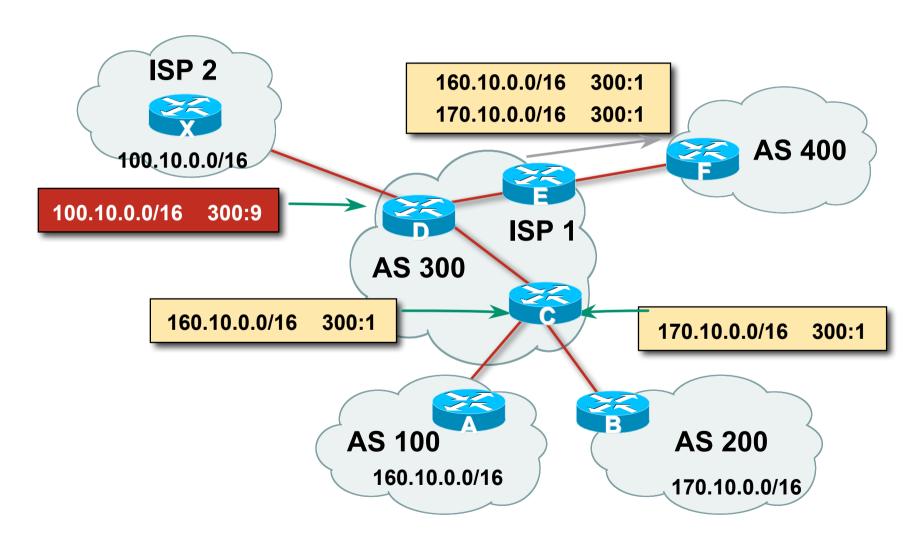
Potential for "metric confusion"

Community

- Communities are described in RFC1997
 Transitive and Optional Attribute
- 32 bit integer


Represented as two 16 bit integers (RFC1998)

Common format is <local-ASN>:xx

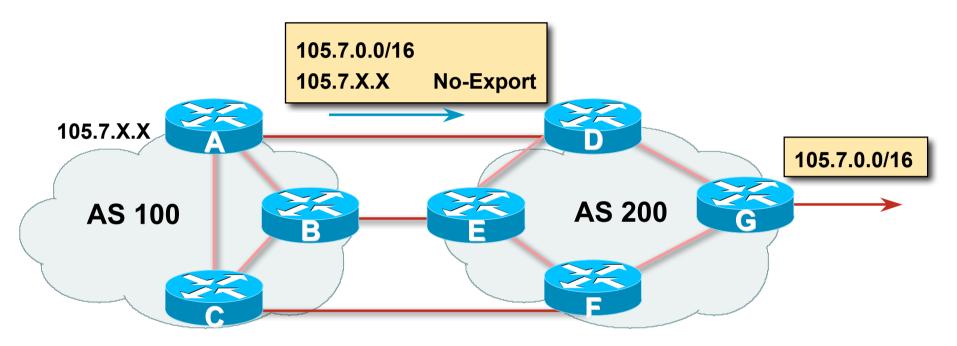

0:0 to 0:65535 and 65535:0 to 65535:65535 are reserved

- Used to group destinations
 Each destination could be member of multiple communities
- Very useful in applying policies within and between ASes

Community Example (before)

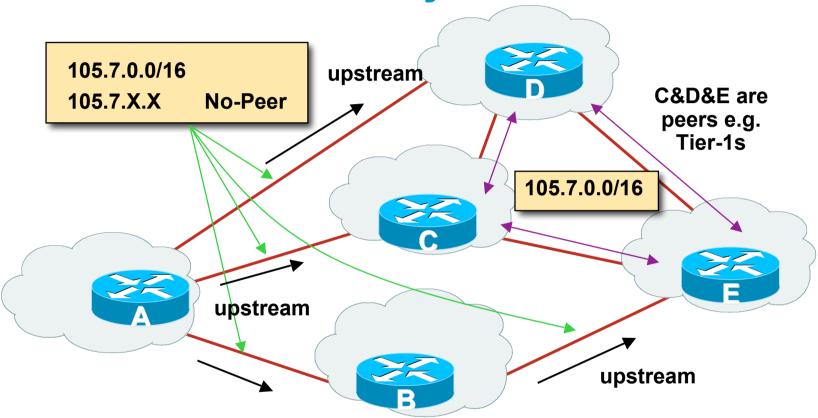
Community Example (after)

Well-Known Communities


Several well known communities

www.iana.org/assignments/bgp-well-known-communities

no-export
 65535:65281
 do not advertise to any eBGP peers


- no-advertise
 do not advertise to any BGP peer
- no-export-subconfed 65535:65283
 do not advertise outside local AS (only used with confederations)
- no-peer
 do not advertise to bi-lateral peers (RFC3765)

No-Export Community

- AS100 announces aggregate and subprefixes
 Intention is to improve loadsharing by leaking subprefixes
- Subprefixes marked with no-export community
- Router G in AS200 does not announce prefixes with no-export community set

No-Peer Community

 Sub-prefixes marked with no-peer community are not sent to bi-lateral peers

They are only sent to upstream providers

Community Implementation details

Community is an optional attribute

Some implementations send communities to iBGP peers by default, some do not

Some implementations send communities to eBGP peers by default, some do not

Being careless can lead to community "confusion"

ISPs need consistent community policy within their own networks

And they need to inform peers, upstreams and customers about their community expectations

BGP Path Selection Algorithm

Why Is This the Best Path?

BGP Path Selection Algorithm for IOS Part One

- Do not consider path if no route to next hop
- Do not consider iBGP path if not synchronised (Cisco IOS only)
- Highest weight (local to router)
- Highest local preference (global within AS)
- Prefer locally originated route
- Shortest AS path

BGP Path Selection Algorithm for IOS Part Two

- Lowest origin codeIGP < EGP < incomplete
- Lowest Multi-Exit Discriminator (MED)

If bgp deterministic-med, order the paths before comparing

(BGP spec does not specify in which order the paths should be compared. This means best path depends on order in which the paths are compared.)

If bgp always-compare-med, then compare for all paths otherwise MED only considered if paths are from the same AS (default)

BGP Path Selection Algorithm for IOS Part Three

- Prefer eBGP path over iBGP path
- Path with lowest IGP metric to next-hop
- Lowest router-id (originator-id for reflected routes)
- Shortest Cluster-List
 Client must be aware of Route Reflector attributes!
- Lowest neighbour IP address

BGP Path Selection Algorithm

In multi-vendor environments:

Make sure the path selection processes are understood for each brand of equipment

Each vendor has slightly different implementations, extra steps, extra features, etc

Watch out for possible MED confusion

Applying Policy with BGP

Controlling Traffic Flow & Traffic Engineering

Applying Policy in BGP: Why?

- Network operators rarely "plug in routers and go"
- External relationships:

Control who they peer with

Control who they give transit to

Control who they get transit from

Traffic flow control:

Efficiently use the scarce infrastructure resources (external link load balancing)

Congestion avoidance

Terminology: Traffic Engineering

Applying Policy in BGP: How?

Policies are applied by:

Setting BGP attributes (local-pref, MED, AS-PATH, community), thereby influencing the path selection process

Advertising or Filtering prefixes

Advertising or Filtering prefixes according to ASN and AS-PATHs

Advertising or Filtering prefixes according to Community membership

Applying Policy with BGP: Tools

• Most implementations have tools to apply policies to BGP:

Prefix manipulation/filtering

AS-PATH manipulation/filtering

Community Attribute setting and matching

 Implementations also have policy language which can do various match/set constructs on the attributes of chosen BGP routes

Extending BGP

- Documented in RFC2842
- Capabilities parameters passed in BGP open message
- Unknown or unsupported capabilities will result in NOTIFICATION message
- Codes:

0 to 63 are assigned by IANA by IETF consensus 64 to 127 are assigned by IANA "first come first served" 128 to 255 are vendor specific

Current capabilities are:

0	Reserved	[RFC3392]
1	Multiprotocol Extensions for BGP-4	[RFC4760]
2	Route Refresh Capability for BGP-4	[RFC2918]
3	Outbound Route Filtering Capability	[RFC5291]
4	Multiple routes to a destination capability	[RFC3107]
5	Extended Next Hop Encoding	[RFC5549]
64	Graceful Restart Capability	[RFC4724]
65	Support for 4 octet ASNs	[RFC4893]
66	Deprecated	
67	Support for Dynamic Capability	[ID]
68	Multisession BGP	[ID]

See www.iana.org/assignments/capability-codes

Multiprotocol extensions

This is a whole different world, allowing BGP to support more than IPv4 unicast routes

Examples include: v4 multicast, IPv6, v6 multicast, VPNs Another tutorial (or many!)

- Route refresh is a well known scaling technique covered shortly
- 32-bit ASNs have recently arrived
- The other capabilities are still in development or not widely implemented or deployed yet

BGP for Internet Service Providers

- BGP Basics
- Scaling BGP
- Using Communities
- Deploying BGP in an ISP network

BGP Scaling Techniques

BGP Scaling Techniques

How does a service provider:

Scale the iBGP mesh beyond a few peers?

Implement new policy without causing flaps and route churning?

Keep the network stable, scalable, as well as simple?

BGP Scaling Techniques

- Route Refresh
- Route Reflectors
- Confederations
- Deploying 4-byte ASNs

Dynamic Reconfiguration

Route Refresh

Route Refresh

- BGP peer reset required after every policy change Because the router does not store prefixes which are rejected by policy
- Hard BGP peer reset:
 Terminates BGP peering & Consult

Terminates BGP peering & Consumes CPU Severely disrupts connectivity for all networks

Soft BGP peer reset (or Route Refresh):

BGP peering remains active

Impacts only those prefixes affected by policy change

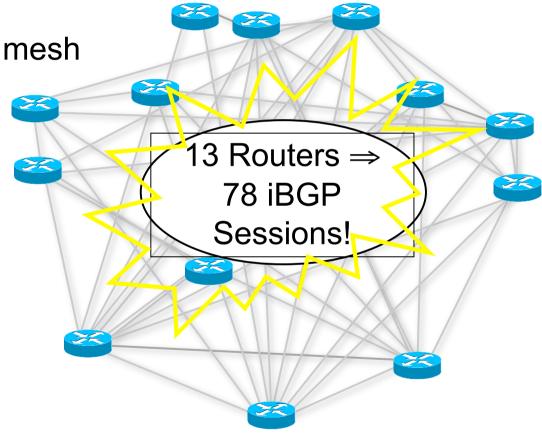
Route Refresh Capability

- Facilitates non-disruptive policy changes
- For most implementations, no configuration is needed
 Automatically negotiated at peer establishment
- No additional memory is used
- Requires peering routers to support "route refresh capability" – RFC2918

Dynamic Reconfiguration

- Use Route Refresh capability if supported find out from the BGP neighbour status display Non-disruptive, "Good For the Internet"
- If not supported, see if implementation has a workaround
- Only hard-reset a BGP peering as a last resort

Consider the impact to be equivalent to a router reboot

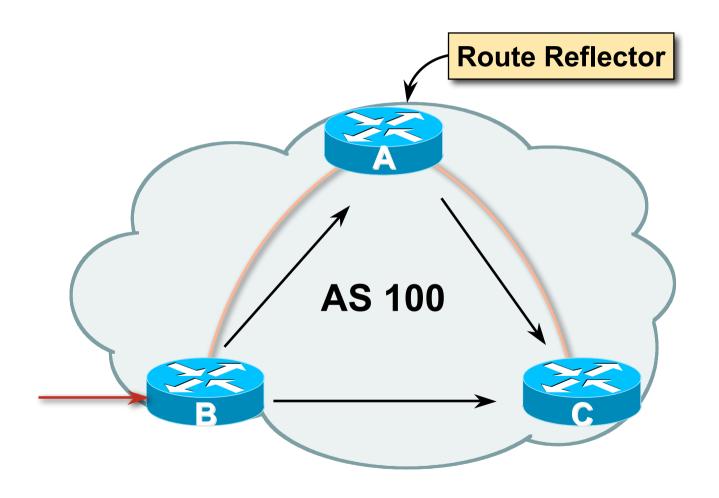

Route Reflectors

Scaling the iBGP mesh

Scaling iBGP mesh

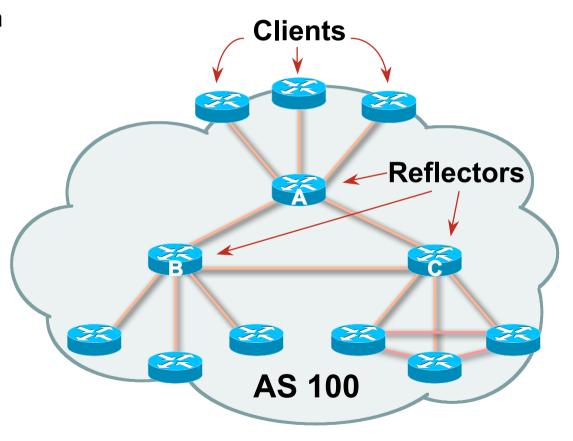
Avoid ½n(n-1) iBGP mesh

n=1000 ⇒ nearly half a million ibgp sessions!



Two solutions

Route reflector – simpler to deploy and run


Confederation – more complex, has corner case advantages

Route Reflector: Principle

Route Reflector

- Reflector receives path from clients and non-clients
- Selects best path
- If best path is from client, reflect to other clients and non-clients
- If best path is from non-client, reflect to clients only
- Non-meshed clients
- Described in RFC4456

Route Reflector: Topology

- Divide the backbone into multiple clusters
- At least one route reflector and few clients per cluster
- Route reflectors are fully meshed
- Clients in a cluster could be fully meshed
- Single IGP to carry next hop and local routes

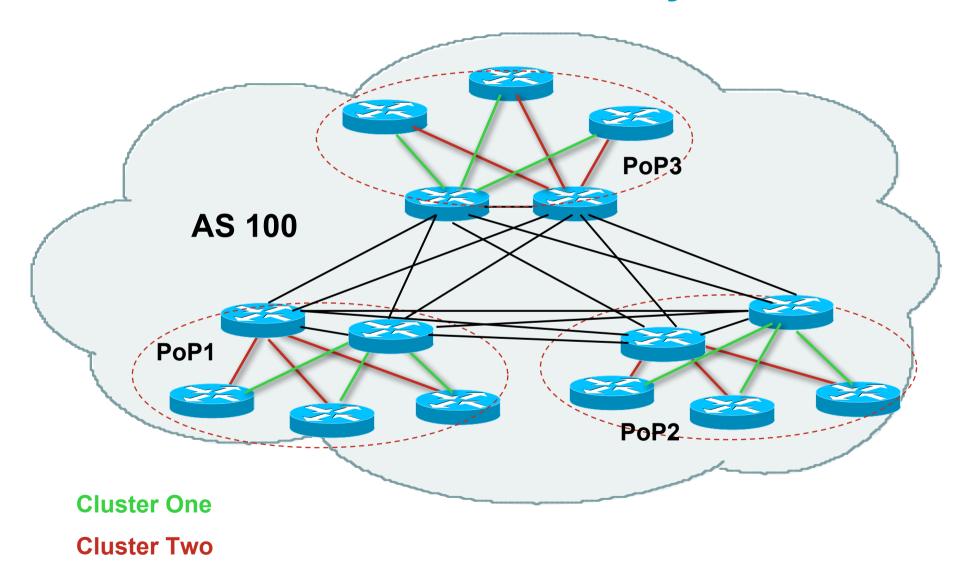
Route Reflector: Loop Avoidance

Originator_ID attribute

Carries the RID of the originator of the route in the local AS (created by the RR)

Cluster list attribute

The local cluster-id is added when the update is sent by the RR Best to set cluster-id is from router-id (address of loopback) (Some ISPs use their own cluster-id assignment strategy – but needs to be well documented!)


Route Reflector: Redundancy

• Multiple RRs can be configured in the same cluster – not advised!

All RRs in the cluster must have the same cluster-id (otherwise it is a different cluster)

- A router may be a client of RRs in different clusters
 - Common today in ISP networks to overlay two clusters redundancy achieved that way
 - → Each client has two RRs = redundancy

Route Reflector: Redundancy

Route Reflector: Benefits

- Solves iBGP mesh problem
- Packet forwarding is not affected
- Normal BGP speakers co-exist
- Multiple reflectors for redundancy
- Easy migration
- Multiple levels of route reflectors

Route Reflector: Deployment

• Where to place the route reflectors?

Always follow the physical topology!

This will guarantee that the packet forwarding won't be affected

Typical ISP network:

PoP has two core routers

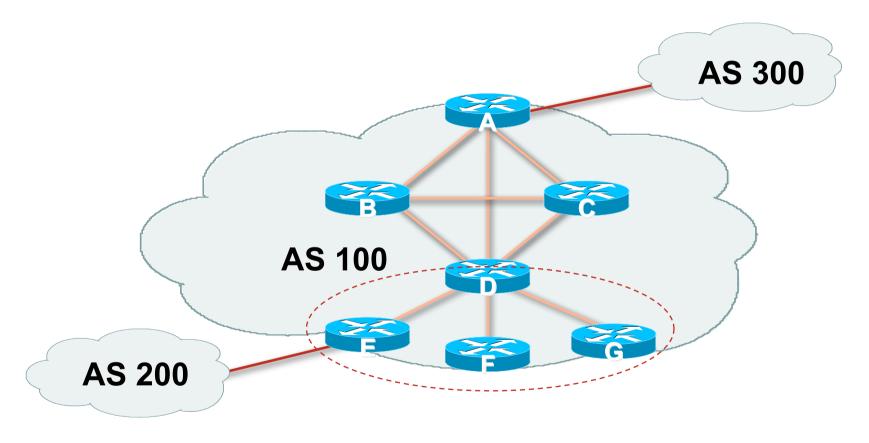
Core routers are RR for the PoP

Two overlaid clusters

Route Reflector: Migration

Typical ISP network:

Core routers have fully meshed iBGP
Create further hierarchy if core mesh too big
Split backbone into regions


Configure one cluster pair at a time

Eliminate redundant iBGP sessions

Place maximum one RR per cluster

Easy migration, multiple levels

Route Reflector: Migration

• Migrate small parts of the network, one part at a time

BGP Confederations

Confederations

Divide the AS into sub-AS

eBGP between sub-AS, but some iBGP information is kept

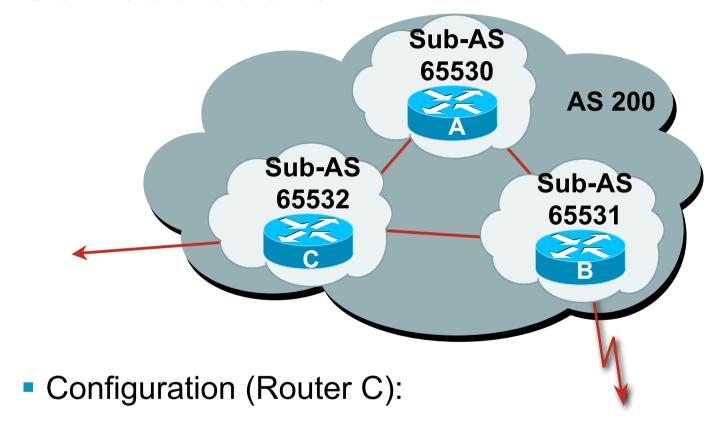
Preserve NEXT_HOP across the sub-AS (IGP carries this information)

Preserve LOCAL_PREF and MED

- Usually a single IGP
- Described in RFC5065

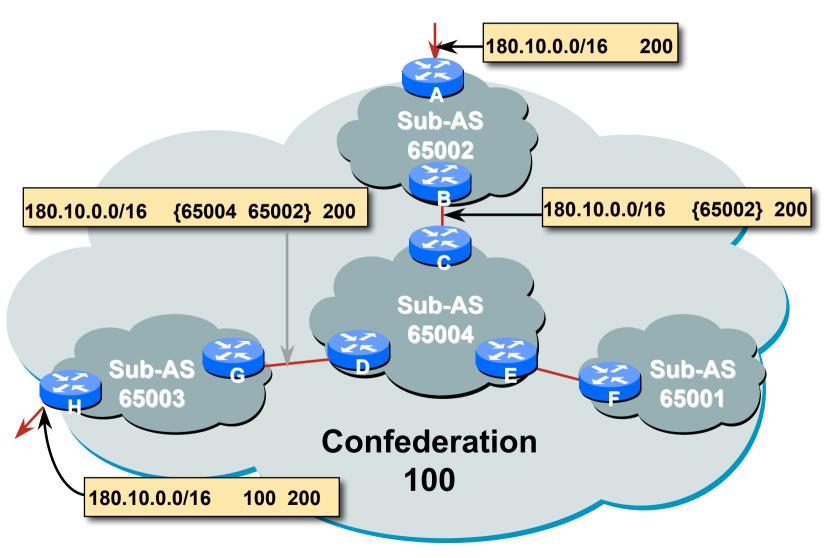
Confederations (Cont.)

Visible to outside world as single AS – "Confederation Identifier"


Each sub-AS uses a number from the private AS range (64512-65534)

iBGP speakers in each sub-AS are fully meshed

The total number of neighbours is reduced by limiting the full mesh requirement to only the peers in the sub-AS


Can also use Route-Reflector within sub-AS

Confederations

bgp confederation identifier 200 bgp confederation peers 65530 65531 neighbor 141.153.12.1 remote-as 65530 neighbor 141.153.17.2 remote-as 65531

Confederations: AS-Sequence

Route Propagation Decisions

Same as with "normal" BGP:

From peer in same sub-AS → only to external peers

From external peers → to all neighbors

"External peers" refers to

Peers outside the confederation

Peers in a different sub-AS

Preserve LOCAL_PREF, MED and NEXT_HOP

RRs or Confederations

	Internet Connectivity	Multi-Level Hierarchy	Policy Control	Scalability	Migration Complexity
Confederations	Anywhere in the Network	Yes	Yes	Medium	Medium to High
Route Reflectors	Anywhere in the Network	Yes	Yes	Very High	Very Low

Most new service provider networks now deploy Route Reflectors from Day One

More points about Confederations

 Can ease "absorbing" other ISPs into you ISP – e.g., if one ISP buys another

Or can use AS masquerading feature available in some implementations to do a similar thing

 Can use route-reflectors with confederation sub-AS to reduce the sub-AS iBGP mesh

Deploying 32-bit ASNs

How to support customers using the extended ASN range

32-bit ASNs

Standards documents

Description of 32-bit ASNs

www.rfc-editor.org/rfc/rfc4893.txt

Textual representation

www.rfc-editor.org/rfc/rfc5396.txt

New extended community

www.rfc-editor.org/rfc/rfc5668.txt

 AS 23456 is reserved as interface between 16-bit and 32-bit ASN world

32-bit ASNs – terminology

- 16-bit ASNs
 Refers to the range 0 to 65535
- 32-bit ASNs
 Refers to the range 65536 to 4294967295
 (or the extended range)
- 32-bit ASN poolRefers to the range 0 to 4294967295

Getting a 32-bit ASN

Sample RIR policy

www.apnic.net/docs/policy/asn-policy.html

- From 1st January 2007
 32-bit ASNs were available on request
- From 1st January 2009
 32-bit ASNs were assigned by default
 16-bit ASNs were only available on request
- From 1st January 2010
 No distinction ASNs assigned from the 32-bit pool

Representation

Representation of 0-4294967295 ASN range

Most operators favour traditional format (asplain)

A few prefer dot notation (X.Y):

asdot for 65536-4294967295, e.g 2.4

asdot+ for 0-4294967295, e.g 0.64513

But regular expressions will have to be completely rewritten for asdot and asdot+!!!

For example:

^[0-9]+\$ matches any ASN (16-bit and asplain)

This and equivalents extensively used in BGP multihoming configurations for traffic engineering

Equivalent regexp for asdot is: ^([0-9]+)|([0-9]+\.[0-9]+)\$

Equivalent regexp for asdot+ is: ^[0-9]+\.[0-9]+\$

Changes

- 32-bit ASNs are backwardly compatible with 16-bit ASNs
- There is no flag day
- You do NOT need to:

Throw out your old routers

Replace your 16-bit ASN with a 32-bit ASN

You do need to be aware that:

Your customers will come with 32-bit ASNs

ASN 23456 is not a bogon!

You will need a router supporting 32-bit ASNs to use a 32-bit ASN locally

 If you have a proper BGP implementation, 32-bit ASNs will be transported silently across your network

How does it work?

- If local router and remote router supports 32-bit ASNs
 BGP peering is configured as normal using the 32-bit ASN
- If local router and remote router does not support 32-bit ASNs

BGP peering can only use a 16-bit ASN

 If local router only supports 16-bit ASN and remote router/network has a 32-bit ASN

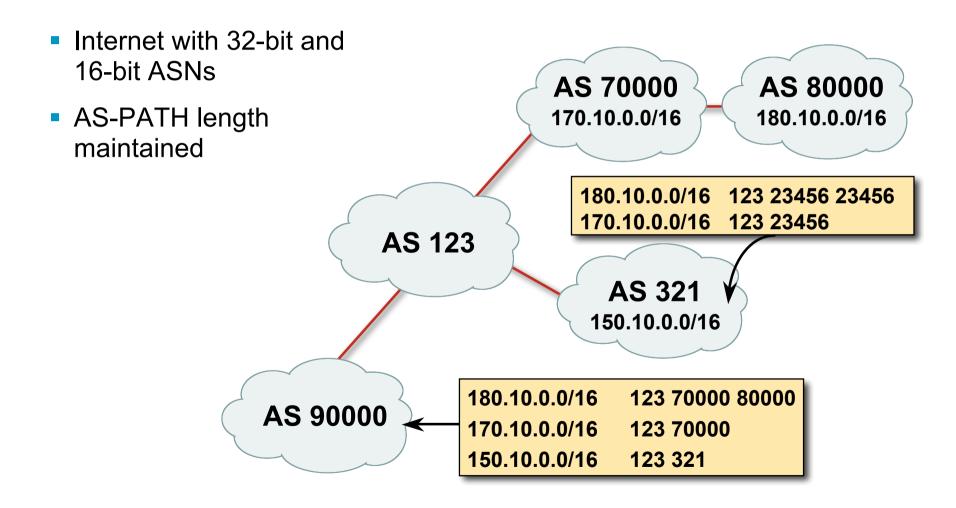
Compatibility mode is initiated...

Compatibility Mode:

- Local router only supports 16-bit ASN and remote router uses 32bit ASN
- BGP peering initiated:

Remote asks local if 32-bit supported (BGP capability negotiation) When local says "no", remote then presents AS23456 Local needs to be configured to peer with remote using AS23456

BGP peering initiated (cont):


BGP session established using AS23456
32-bit ASN included in a new BGP attribute called AS4_PATH
(as opposed to AS_PATH for 16-bit ASNs)

Result:

16-bit ASN world sees 16-bit ASNs and 23456 standing in for 32-bit ASNs

32-bit ASN world sees 16 and 32-bit ASNs

Example:

What has changed?

Two new BGP attributes:

AS4 PATH

Carries 32-bit ASN path info

AS4 AGGREGATOR

Carries 32-bit ASN aggregator info

Well-behaved BGP implementations will simply pass these along if they don't understand them

AS23456 (AS_TRANS)

What do they look like?

IPv4 prefix originated by AS3.5
 as4-7200#sh ip bgp 145.125.0.0/20
 BGP routing table entry for 145.125.0.0/20, version 58734
 Paths: (1 available, best #1, table default)
 asdot
 2.0 12654 3.5
 204.69.200.25 from 204.69.200.25 (204.69.200.25)
 Origin IGP, localpref 100, valid, internal, best

What do they look like?

• IPv4 prefix originated by AS196613 But 16-bit AS world view:

AS

```
BGP-view1>sh ip bgp 145.125.0.0/20

BGP routing table entry for 145.125.0.0/20, version 113382

Paths: (1 available, best #1, table Default-IP-Routing-Table)

23456 12654 23456

204.69.200.25 from 204.69.200.25 (204.69.200.25)

Origin IGP, localpref 100, valid, external, best

Transition
```

If 32-bit ASN not supported:

- Inability to distinguish between peer ASes using 32-bit ASNs
 They will all be represented by AS23456
 Could be problematic for transit provider's policy
- Inability to distinguish prefix's origin AS
 How to tell whether origin is real or fake?
 The real and fake both represented by AS23456
 (There should be a better solution here!)
- Incorrect NetFlow summaries:

Prefixes from 32-bit ASNs will all be summarised under AS23456 Traffic statistics need to be measured per prefix and aggregated Makes it hard to determine peerability of a neighbouring network

Implementations (Jan 2010)

- Cisco IOS-XR 3.4 onwards
- Cisco IOS-XE 2.3 onwards
- Cisco IOS 12.0(32)S12, 12.4(24)T, 12.2SRE
- Cisco NX-OS 4.0(1)
- Quagga (patches for 0.99.6)
- OpenBGPd (patches for 3.9 & 4.0)
- Juniper JunOSe 4.1.0 & JunOS 9.1
- Redback SEOS
- Force10 FTOS7.7.1 onwards

http://as4.cluepon.net/index.php/Software_Support for a complete list

Route Flap Damping

Network Stability for the 1990s

Network Instability for the 21st Century!

Route Flap Damping

- For many years, Route Flap Damping was a strongly recommended practice
- Now it is strongly discouraged as it appears to cause far greater network instability than it cures
- But first, the theory...

Route Flap Damping

Route flap

Going up and down of path or change in attribute

BGP WITHDRAW followed by UPDATE = 1 flap

eBGP neighbour going down/up is NOT a flap

Ripples through the entire Internet

Wastes CPU

Damping aims to reduce scope of route flap propagation

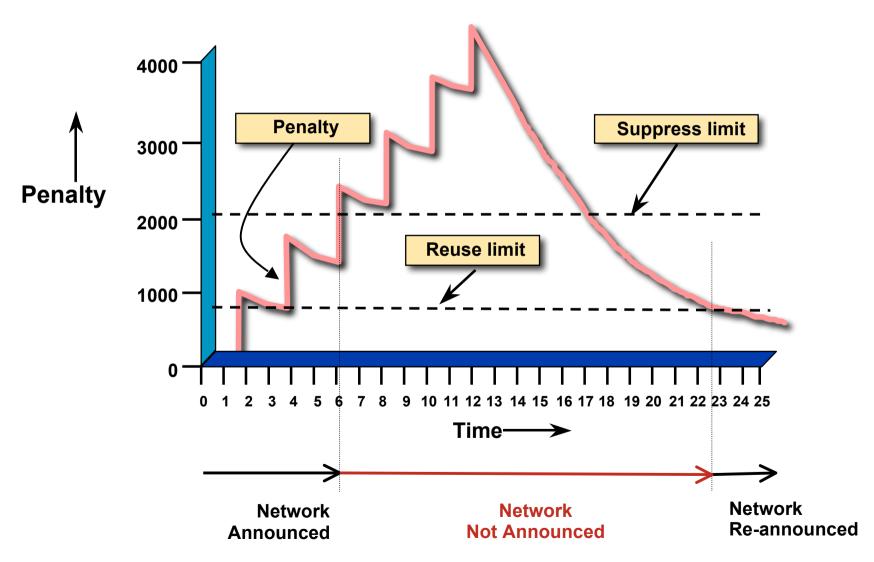
Route Flap Damping (continued)

Requirements

Fast convergence for normal route changes

History predicts future behaviour

Suppress oscillating routes


Advertise stable routes

Implementation described in RFC 2439

Operation

- Add penalty (1000) for each flap
 Change in attribute gets penalty of 500
- Exponentially decay penalty half life determines decay rate
- Penalty above suppress-limit do not advertise route to BGP peers
- Penalty decayed below reuse-limit re-advertise route to BGP peers penalty reset to zero when it is half of reuse-limit

Operation

Operation

- Only applied to inbound announcements from eBGP peers
- Alternate paths still usable
- Controllable by at least:

Half-life

reuse-limit

suppress-limit

maximum suppress time

Configuration

Implementations allow various policy control with flap damping

Fixed damping, same rate applied to all prefixes

Variable damping, different rates applied to different ranges of prefixes and prefix lengths

Route Flap Damping History

- First implementations on the Internet by 1995
- Vendor defaults too severe

RIPE Routing Working Group recommendations in ripe-178, ripe-210, and ripe-229

http://www.ripe.net/ripe/docs

But many ISPs simply switched on the vendors' default values without thinking

Serious Problems:

 "Route Flap Damping Exacerbates Internet Routing Convergence"

Zhuoqing Morley Mao, Ramesh Govindan, George Varghese & Randy H. Katz, August 2002

- "What is the sound of one route flapping?"
 Tim Griffin, June 2002
- Various work on routing convergence by Craig Labovitz and Abha Ahuja a few years ago
- "Happy Packets"
 Closely related work by Randy Bush et al.

Problem 1:

One path flaps:

BGP speakers pick next best path, announce to all peers, flap counter incremented

Those peers see change in best path, flap counter incremented

After a few hops, peers see multiple changes simply caused by a single flap → prefix is suppressed

Problem 2:

 Different BGP implementations have different transit time for prefixes

Some hold onto prefix for some time before advertising Others advertise immediately

 Race to the finish line causes appearance of flapping, caused by a simple announcement or path change → prefix is suppressed

Solution:

- Do NOT use Route Flap Damping whatever you do!
- RFD will unnecessarily impair access to your network and to the Internet
- More information contained in RIPE Routing Working Group recommendations:

www.ripe.net/ripe/docs/ripe-378.[pdf,html,txt]

BGP for Internet Service Providers

- BGP Basics
- Scaling BGP
- Using Communities
- Deploying BGP in an ISP network

Service Provider use of Communities

Some examples of how ISPs make life easier for themselves

BGP Communities

- Another ISP "scaling technique"
- Prefixes are grouped into different "classes" or communities within the ISP network
- Each community means a different thing, has a different result in the ISP network

BGP Communities

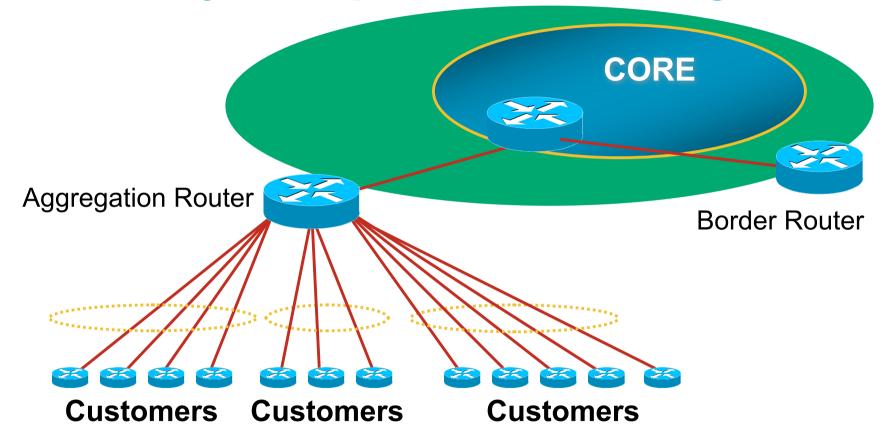
 Communities are generally set at the edge of the ISP network

Customer edge: customer prefixes belong to different communities depending on the services they have purchased

Internet edge: transit provider prefixes belong to difference communities, depending on the loadsharing or traffic engineering requirements of the local ISP, or what the demands from its BGP customers might be

Two simple examples follow to explain the concept

- This demonstrates how communities might be used at the customer edge of an ISP network
- ISP has three connections to the Internet:
 - IXP connection, for local peers
 - Private peering with a competing ISP in the region
 - Transit provider, who provides visibility to the entire Internet
- Customers have the option of purchasing combinations of the above connections


Community assignments:

IXP connection: community 100:2100

Private peer: community 100:2200

 Customer who buys local connectivity (via IXP) is put in community 100:2100

- Customer who buys peer connectivity is put in community 100:2200
- Customer who wants both IXP and peer connectivity is put in 100:2100 and 100:2200
- Customer who wants "the Internet" has no community set
 We are going to announce his prefix everywhere

 Communities set at the aggregation router where the prefix is injected into the ISP's iBGP

- No need to alter filters at the network border when adding a new customer
- New customer simply is added to the appropriate community

Border filters already in place take care of announcements

⇒ Ease of operation!

Community Example: Internet Edge

- This demonstrates how communities might be used at the peering edge of an ISP network
- ISP has four types of BGP peers:

Customer

IXP peer

Private peer

Transit provider

- The prefixes received from each can be classified using communities
- Customers can opt to receive any or all of the above

Community Example: Internet Edge

Community assignments:

Customer prefix: community 100:3000

IXP prefix: community 100:3100

Private peer prefix: community 100:3200

- BGP customer who buys local connectivity gets 100:3000
- BGP customer who buys local and IXP connectivity receives community 100:3000 and 100:3100
- BGP customer who buys full peer connectivity receives community 100:3000, 100:3100, and 100:3200
- Customer who wants "the Internet" gets everything Gets default route originated by aggregation router
 Or pays money to get all 220k prefixes

Community Example: Internet Edge

 No need to create customised filters when adding customers

Border router already sets communities

Installation engineers pick the appropriate community set when establishing the customer BGP session

⇒ Ease of operation!

Community Example – Summary

- Two examples of customer edge and internet edge can be combined to form a simple community solution for ISP prefix policy control
- More experienced operators tend to have more sophisticated options available

Advice is to start with the easy examples given, and then proceed onwards as experience is gained

ISP BGP Communities

 There are no recommended ISP BGP communities apart from RFC1998

The five standard communities

www.iana.org/assignments/bgp-well-known-communities

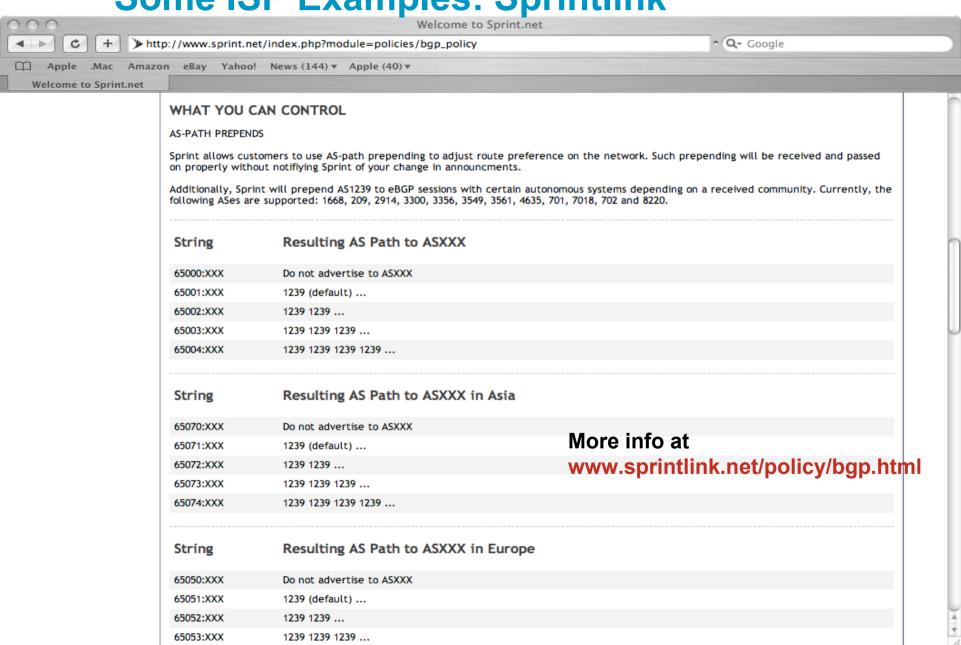
Efforts have been made to document from time to time

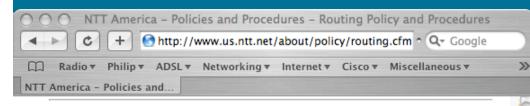
totem.info.ucl.ac.be/publications/papers-elec-versions/draft-quoitin-bgp-comm-survey-00.pdf

But so far... nothing more... ⊗

Collection of ISP communities at www.onesc.net/communities

NANOG Tutorial:


www.nanog.org/meetings/nanog40/presentations/BGPcommunities.pdf


ISP policy is usually published

On the ISP's website

Referenced in the AS Object in the IRR

Some ISP Examples: Sprintlink

BGP customer communities

Customers wanting to alter local preference on their routes.

NTT Communications BGP customers may choose to affect our local preference on their routes by marking their routes with the following communities:

Community	Local-pref	Description
(default)	120	customer
2914:450	96	customer fallback
2914:460	98	peer backup
2914:470	100	peer
2914:480	110	customer backup
2914:490	120	customer default

Customers wanting to alter their route announcements to other customers.

NTT Communications BGP customers may choose to prepend to all other NTT Communications BGP customers with the following communities:

Community	Description
2914:411	prepends o/b to customer 1x
2914:412	prepends o/b to customer 2x
2914:413	prepends o/b to customer 3x

Customers wanting to alter their route announcements to peers.

NTT Communications BGP customers may choose to prepend to all NTT Communications peers with the following communities:

Community	Description	
2914:421	prepends o/b to peer 1x	
2914:422	prepends o/b to peer 2x	

Some ISP Examples: NTT

More info at

www.us.ntt.net/about/policy/routing.cfm

Some ISP Examples AAPT

- Australian ISP
- Run their own Routing Registry
 Whois.connect.com.au
- Offer 6 different communities to customers to aid with their traffic engineering

Some ISP Examples AAPT

```
AS2764
aut-num:
              ASN-CONNECT-NET
as-name:
descr:
              AAPT Limited
admin-c:
              CNO2-AP
tech-c:
              CNO2-AP
              Community support definitions
remarks:
remarks:
remarks:
              Community Definition
remarks:
              2764:2 Don't announce outside local POP
remarks:
remarks:
              2764:4 Lower local preference by 15
remarks:
              2764:5 Lower local preference by 5
remarks:
              2764:6 Announce to customers and all peers
                            (incl int'l peers), but not transit
              2764:7 Announce to customers only
remarks:
remarks:
              2764:14 Announce to AANX
notify:
              routing@connect.com.au
mnt-by:
              CONNECT-AU
              nobody@connect.com.au 20050225
changed:
              CCAIR
source:
```

More at http://info.connect.com.au/docs/routing/general/multi-faq.shtml#q13

Some ISP Examples Verizon Business EMEA

- Verizon Business' European operation
- Permits customers to send communities which determine

local preferences within Verizon Business' network

Reachability of the prefix

How the prefix is announced outside of Verizon Business' network

Some ISP Examples Verizon Business Europe

```
aut-num: AS702
descr: Verizon Business EMEA - Commercial IP service provider in Eur
remarks: VzBi uses the following communities with its customers:
        702:80
                  Set Local Pref 80 within AS702
        702:120
                  Set Local Pref 120 within AS702
        702:20
                  Announce only to VzBi AS'es and VzBi customers
        702:30
                  Keep within Europe, don't announce to other VzBi AS
        702:1
                  Prepend AS702 once at edges of VzBi to Peers
        702:2
                  Prepend AS702 twice at edges of VzBi to Peers
        702:3
                  Prepend AS702 thrice at edges of VzBi to Peers
        Advanced communities for customers
        702:7020 Do not announce to AS702 peers with a scope of
                  National but advertise to Global Peers, European
                  Peers and VzBi customers.
        702:7001 Prepend AS702 once at edges of VzBi to AS702
                  peers with a scope of National.
        702:7002
                  Prepend AS702 twice at edges of VzBi to AS702
                  peers with a scope of National.
(more)
```

Some ISP Examples VzBi Europe

```
(more)
         702:7003 Prepend AS702 thrice at edges of VzBi to AS702
                  peers with a scope of National.
         702:8020 Do not announce to AS702 peers with a scope of
                  European but advertise to Global Peers, National
                  Peers and VzBi customers.
         702:8001 Prepend AS702 once at edges of VzBi to AS702
                  peers with a scope of European.
         702:8002 Prepend AS702 twice at edges of VzBi to AS702
                  peers with a scope of European.
         702:8003 Prepend AS702 thrice at edges of VzBi to AS702
                  peers with a scope of European.
         Additional details of the VzBi communities are located at:
         http://www.verizonbusiness.com/uk/customer/bqp/
mnt-by: WCOM-EMEA-RICE-MNT
source: RIPE
```

Some ISP Examples BT Ignite

One of the most comprehensive community lists around

Seems to be based on definitions originally used in Tiscali's network

whois -h whois.ripe.net AS5400 reveals all

 Extensive community definitions allow sophisticated traffic engineering by customers

Some ISP Examples BT Ignite

aut-num:	AS5400	
descr:	BT Ignite European Backbone	
remarks:		
remarks:	Community to	Community to
remarks:	Not announce To peer:	AS prepend 5400
remarks:		
remarks:	5400:1000 All peers & Transits	5400:2000
remarks:		
remarks:	5400:1500 All Transits	5400:2500
remarks:	5400:1501 Sprint Transit (AS1239)	5400:2501
remarks:	5400:1502 SAVVIS Transit (AS3561)	5400:2502
remarks:	5400:1503 Level 3 Transit (AS3356)	5400:2503
remarks:	5400:1504 AT&T Transit (AS7018)	5400:2504
remarks:	5400:1506 GlobalCrossing Trans (AS3549)	5400:2506
remarks:		
remarks:	5400:1001 Nexica (AS24592)	5400:2001
remarks:	5400:1002 Fujitsu (AS3324)	5400:2002
remarks:	5400:1004 C&W EU (1273)	5400:2004
<snip></snip>		
notify:	notify@eu.bt.net And mar	NV.
mnt-by:	CIP-MNT	
source:	RIPE many mo	re!

Some ISP Examples Level 3

- Highly detailed AS object held on the RIPE Routing Registry
- Also a very comprehensive list of community definitions

whois -h whois.ripe.net AS3356 reveals all

Some ISP Examples Level 3

```
AS3356
aut-num:
             Level 3 Communications
descr:
<snip>
remarks:
             customer traffic engineering communities - Suppression
remarks:
remarks:
             64960:XXX - announce to AS XXX if 65000:0
remarks:
remarks:
             65000:0 - announce to customers but not to peers
remarks:
             65000:XXX - do not announce at peerings to AS XXX
remarks:
remarks:
             customer traffic engineering communities - Prepending
remarks:
             65001:0 - prepend once to all peers
remarks:
remarks:
             65001:XXX - prepend once at peerings to AS XXX
<snip>
             3356:70 - set local preference to 70
remarks:
          3356:80 - set local preference to 80
remarks:
remarks: 3356:90 - set local preference to 90
remarks:
             3356:9999 - blackhole (discard) traffic
<snip>
mnt-by:
             LEVEL3-MNT
                                                  And many
source:
             RIPE
                                                 many more!
```

BGP for Internet Service Providers

- BGP Basics
- Scaling BGP
- Using Communities
- Deploying BGP in an ISP network

Deploying BGP in an ISP Network

Okay, so we've learned all about BGP now; how do we use it on our network??

Deploying BGP

- The role of IGPs and iBGP
- Aggregation
- Receiving Prefixes
- Configuration Tips

The role of IGP and iBGP

Ships in the night?

Or

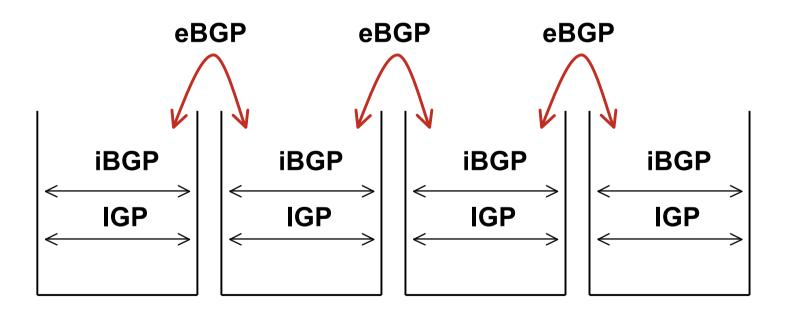
Good foundations?

BGP versus OSPF/ISIS

Internal Routing Protocols (IGPs)

examples are ISIS and OSPF

used for carrying infrastructure addresses


NOT used for carrying Internet prefixes or customer prefixes design goal is to minimise number of prefixes in IGP to aid scalability and rapid convergence

BGP versus OSPF/ISIS

- BGP used internally (iBGP) and externally (eBGP)
- iBGP used to carry some/all Internet prefixes across backbone customer prefixes
- eBGP used to exchange prefixes with other ASes implement routing policy

BGP/IGP model used in ISP networks

Model representation

BGP versus OSPF/ISIS

DO NOT:

distribute BGP prefixes into an IGP distribute IGP routes into BGP use an IGP to carry customer prefixes

YOUR NETWORK WILL NOT SCALE

Injecting prefixes into iBGP

- Use iBGP to carry customer prefixes
 Don't ever use IGP
- Point static route to customer interface
- Enter network into BGP process
 - Ensure that implementation options are used so that the prefix always remains in iBGP, regardless of state of interface
 - i.e. avoid iBGP flaps caused by interface flaps

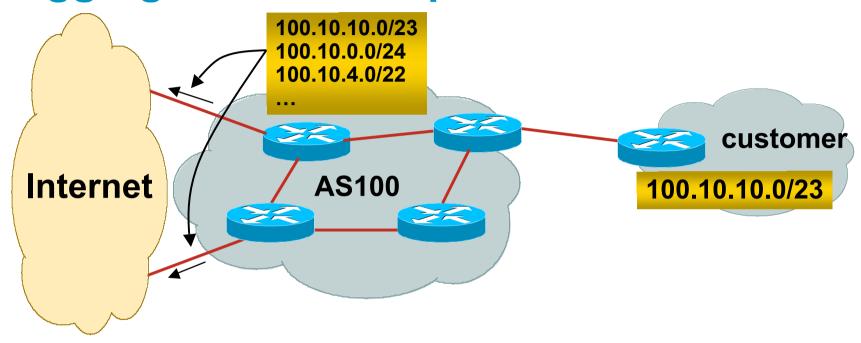
Aggregation

Quality or Quantity?

Aggregation

- Aggregation means announcing the address block received from the RIR to the other ASes connected to your network
- Subprefixes of this aggregate may be:
 - Used internally in the ISP network
 - Announced to other ASes to aid with multihoming
- Unfortunately too many people are still thinking about class Cs, resulting in a proliferation of /24s in the Internet routing table

Aggregation


- Address block should be announced to the Internet as an aggregate
- Subprefixes of address block should NOT be announced to Internet unless special circumstances (more later)
- Aggregate should be generated internally Not on the network borders!

Announcing an Aggregate

- ISPs who don't and won't aggregate are held in poor regard by community
- Registries publish their minimum allocation size Anything from a /20 to a /22 depending on RIR Different sizes for different address blocks
- No real reason to see anything longer than a /22 prefix in the Internet

BUT there are currently >163000 /24s!

Aggregation – Example

- Customer has /23 network assigned from AS100's /19 address block
- AS100 announces customers' individual networks to the Internet

Aggregation – Bad Example

Customer link goes down

Their /23 network becomes unreachable

/23 is withdrawn from AS100's iBGP

 Their ISP doesn't aggregate its /19 network block

/23 network withdrawal announced to peers

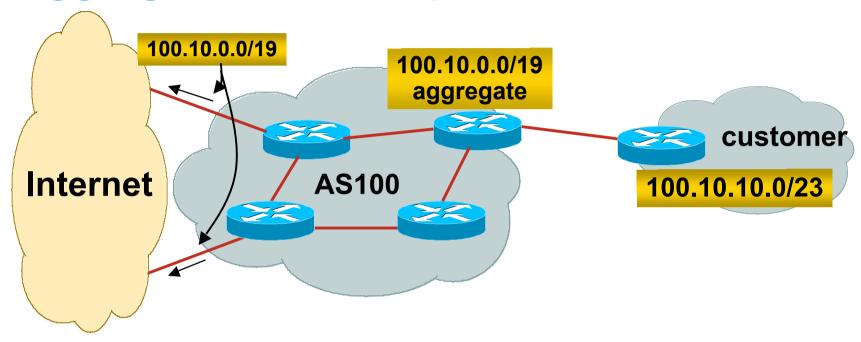
starts rippling through the Internet

added load on all Internet backbone routers as network is removed from routing table Customer link returns

Their /23 network is now visible to their ISP

Their /23 network is readvertised to peers

Starts rippling through Internet


Load on Internet backbone routers as network is reinserted into routing table

Some ISP's suppress the flaps

Internet may take 10-20 min or longer to be visible

Where is the Quality of Service???

Aggregation – Example

- Customer has /23 network assigned from AS100's /19 address block
- AS100 announced /19 aggregate to the Internet

Aggregation – Good Example

- Customer link goes down their /23 network becomes unreachable
 /23 is withdrawn from AS100's iBGP
- /19 aggregate is still being announced
 no BGP hold down problems
 no BGP propagation delays
 no damping by other ISPs

- Customer link returns
- Their /23 network is visible again

The /23 is re-injected into AS100's iBGP

- The whole Internet becomes visible immediately
- Customer has Quality of Service perception

Aggregation – Summary

Good example is what everyone should do!

Adds to Internet stability

Reduces size of routing table

Reduces routing churn

Improves Internet QoS for everyone

Bad example is what too many still do!

Why? Lack of knowledge?

Laziness?

The Internet Today (February 2010)

Current Internet Routing Table Statistics

BGP Routing Table Entries	312233
Prefixes after maximum aggregation	144486
Unique prefixes in Internet	153304
Prefixes smaller than registry alloc	150079
/24s announced	163196
only 5712 /24s are from 192.0.0.0/8	
ASes in use	33408

"The New Swamp"

Swamp space is name used for areas of poor aggregation

The original swamp was 192.0.0.0/8 from the former class C block

Name given just after the deployment of CIDR

The new swamp is creeping across all parts of the Internet Not just RIR space, but "legacy" space too

"The New Swamp" RIR Space – February 1999

RIR blocks contribute 88% of the Internet Routing Table

Block	Networks	Block	Networks	Block	Networks	Block	Networks
24/8	165	79/8	0	118/8	0	201/8	0
41/8	0	80/8	0	119/8	0	202/8	2276
58/8	0	81/8	0	120/8	0	203/8	3622
59/8	0	82/8	0	121/8	0	204/8	3792
60/8	0	83/8	0	122/8	0	205/8	2584
61/8	3	84/8	0	123/8	0	206/8	3127
62/8	87	<i>85/8</i>	0	124/8	0	207/8	2723
63/8	20	86/8	0	125/8	0	208/8	2817
64/8	0	87/8	0	126/8	0	209/8	2574
65/8	0	88/8	0	173/8	0	210/8	617
66/8	0	89/8	0	174/8	0	211/8	0
67/8	0	90/8	0	186/8	0	212/8	717
68/8	0	91/8	0	187/8	0	213/8	1
69/8	0	96/8	0	189/8	0	216/8	943
70/8	0	97/8	0	190/8	0	217/8	0
71/8	0	98/8	0	192/8	6275	218/8	0
72/8	0	99/8	0	193/8	2390	219/8	0
73/8	0	112/8	0	194/8	2932	220/8	0
74/8	0	113/8	0	195/8	1338	221/8	0 0 0
75/8	0	114/8	0	196/8	513	222/8	0
76/8	0	115/8	0	198/8	4034		
77/8	0	116/8	0	199/8	3495		
78/8	0	117/8	0	200/8	1348		

"The New Swamp" RIR Space – February 2010

RIR blocks contribute about 87% of the Internet Routing Table

Block	Networks	Block	Networks	Block	Networks Networks	Block	Networks
24/8	3328	79/8	1119	118/8	1349	201/8	4136
41/8	3448	80/8	2335	119/8	1694	202/8	11354
58/8	1675	81/8	1709	120/8	531	203/8	11677
59/8	1575	82/8	1358	121/8	1756	204/8	5744
60/8	888	83/8	1357	122/8	2687	205/8	3037
61/8	2890	84/8	1341	123/8	2400	206/8	3951
62/8	2418	85/8	2492	124/8	2259	207/8	4635
63/8	3114	86/8	780	125/8	2514	208/8	6498
64/8	6601	87/8	1466	126/8	106	209/8	5536
65/8	3966	88/8	1068	173/8	1994	210/8	4977
66/8	7782	89/8	3168	174/8	1089	211/8	3130
67/8	3771	90/8	377	186/8	1223	212/8	3550
68/8	3221	91/8	4555	187/8	1501	213/8	3442
69/8	5280	96/8	778	189/8	3063	216/8	7645
70/8	2008	97/8	725	190/8	6945	217/8	3136
71/8	1327	98/8	1312	192/8	6952	218/8	1512
72/8	4050	99/8	288	193/8	6820	219/8	1303
73/8	4	112/8	883	194/8	5177	220/8	2108
74/8	5074	113/8	890	195/8	5325	221/8	980
75/8	1164	114/8	996	196/8	1857	222/8	1058
76/8	1034	115/8	1616	198/8	4504		
77/8	1964	116/8	1755	199/8	4372		
78/8	1397	117/8	1611	200/8	8884		

"The New Swamp" Summary

RIR space shows creeping deaggregation

It seems that an RIR /8 block averages around 5000 prefixes once fully allocated

So their existing 96 /8s will eventually cause 445000 prefix announcements

Food for thought:

Remaining 24 unallocated /8s and the 96 RIR /8s combined will cause:

635000 prefixes with 5000 prefixes per /8 density

762000 prefixes with 6000 prefixes per /8 density

Plus 12% due to "non RIR space deaggregation"

→ Routing Table size of 853440 prefixes

"The New Swamp" Summary

- Rest of address space is showing similar deaggregation too
- What are the reasons?
 Main justification is traffic engineering
- Real reasons are:

Lack of knowledge

Laziness

Deliberate & knowing actions

BGP Report (bgp.potaroo.net)

- 199336 total announcements in October 2006
- 129795 prefixes

After aggregating including full AS PATH info i.e. including each ASN's traffic engineering 35% saving possible

109034 prefixes

After aggregating by Origin AS i.e. ignoring each ASN's traffic engineering

10% saving possible

Deaggregation: The Excuses

- Traffic engineering causes 10% of the Internet Routing table
- Deliberate deaggregation causes 35% of the Internet Routing table

Efforts to improve aggregation

The CIDR Report

Initiated and operated for many years by Tony Bates
Now combined with Geoff Huston's routing analysis

www.cidr-report.org

Results e-mailed on a weekly basis to most operations lists around the world

Lists the top 30 service providers who could do better at aggregating

RIPE Routing WG aggregation recommendation

RIPE-399 — http://www.ripe.net/ripe/docs/ripe-399.html

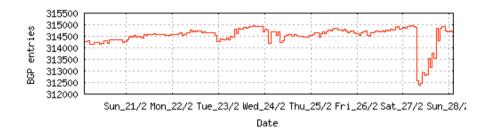
Efforts to Improve Aggregation The CIDR Report

- Also computes the size of the routing table assuming ISPs performed optimal aggregation
- Website allows searches and computations of aggregation to be made on a per AS basis

Flexible and powerful tool to aid ISPs

Intended to show how greater efficiency in terms of BGP table size can be obtained without loss of routing and policy information

Shows what forms of origin AS aggregation could be performed and the potential benefit of such actions to the total table size


Very effectively challenges the traffic engineering excuse

Status Summary

Table History

Date	Prefixes	CIDR Aggregated
21-02-10	314286	193384
22-02-10	314579	193201
23-02-10	314271	193206
24-02-10	314688	193182
25-02-10	314529	193511
26-02-10	314600	193576
27-02-10	314835	193273
28-02-10	314692	193481

Plot: BGP Table Size

AS Summary

33679	Number of ASes in routing system
14344	Number of ASes announcing only one prefix
4388	Largest number of prefixes announced by an AS
93180416	AS4323: TWTC - tw telecom holdings, inc. Largest address span announced by an AS (/32s) AS4134: CHINANET-BACKBONE No.31,Jin- rong Street

Plot: AS count

Plot: Average announcements per origin AS Report: ASes ordered by originating address span Report: ASes ordered by transit address span

Report: Autonomous System number-to-name mapping (from Registry WHOIS data)

Aggregation Summary

The algorithm used in this report proposes aggregation only when there is a precise match using AS path so as to preserve traffic transit policies. Aggregation is also proposed across non-advertised address space ('holes').

--- 28Feb10 ---

ASnum	NetsNow	NetsAggr	NetGain	9/ Gain	⁶ Description
Table	315099	193302	121797	38.7%	All ASes
AS6389	4063	317	3746	92.2%	BELLSOUTH-NET-BLK - BellSouth.net Inc.
AS4323	4388	1852	2536	57.8%	TWTC - tw telecom holdings, inc.
AS4766	1859	491	1368	73.6%	KIXS-AS-KR Korea Telecom
AS1785	1832	662	1170	63.9%	AS-PAETEC-NET - PaeTec Communications, Inc.
AS4755	1286	213	1073	83.4%	TATACOMM-AS TATA Communications formerly VSNL is Leading ISP
AS22773	1126	74	1052	93.4%	ASN-CXA-ALL-CCI-22773-RDC - Cox Communications Inc.
AS18566	1059	33	1026	96.9%	COVAD - Covad Communications Co.
AS17488	1293	361	932	72.1%	HATHWAY-NET-AP Hathway IP Over Cable Internet
AS8151	1578	671	907	57.5%	Uninet S.A. de C.V.
AS18101	1082	241	841		RIL-IDC Reliance Infocom Ltd Internet Data Centre,
AS10620	1010	178	832	82.4%	TV Cable S.A.
AS19262	1069	243	826		VZGNI-TRANSIT - Verizon Internet Services Inc.
AS6478	1122	439	683		ATT-INTERNET3 - AT&T WorldNet Services
AS8452	994	362	632	63.6%	TEDATA TEDATA
AS4808	852	238	614	72.1%	CHINA169-BJ CNCGROUP IP network China169 Beijing Province Network
AS4804	678	72	606	89.4%	MPX-AS Microplex PTY LTD
AS28573	890	289	601	67.5%	NET Servicos de Comunicao S.A.
AS35805	581	14	567	97.6%	UTG-AS United Telecom AS
AS4134	1019	460	559	54.9%	CHINANET-BACKBONE No.31, Jin-rong Street
AS7303	652	94	558	85.6%	Telecom Argentina S.A.
AS7018	1562	1007	555	35.5%	ATT-INTERNET4 - AT&T WorldNet Services
AS3356	1204	662	542	45.0%	LEVEL3 Level 3 Communications
AS17908	768	230	538	70.1%	TCISL Tata Communications
AS24560	850	316	534	62.8%	AIRTELBROADBAND-AS-AP Bharti Airtel Ltd., Telemedia Services

Top 20 Added Routes this week per Originating AS

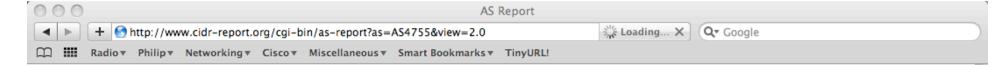
Prefixes	ASnum	AS Description
		GOLDENLINES-ASN 012 Smile Communications Main Autonomous System
		ERMS-EARTHLNK - EARTHLINK, INC.
		PKTELECOM-AS-PK Pakistan Telecommunication Company Limited
90	AS6429	Telmex Chile Internet S.A.
71	AS17785	CHINATELECOM-HA-AS-AP asn for Henan Provincial Net of CT
66	AS46989	MAXIMUMCOLO - MaximumColo LLC
63	AS5486	SMILE-ASN Euronet Digital Communications, (1992) LTD, Israel
57	AS30447	INFB2-AS - InternetNamesForBusiness.com
47	AS29582	SATCOM-AS SATCOM Ltd Pleven
36	AS31334	KABELDEUTSCHLAND-AS Kabel Deutschland Breitband Service GmbH
35	AS28573	NET Servicos de Comunicao S.A.
32	AS7345	LUCENTTECH - Lucent Technologies Inc.
		CONECEL
		QualityNet AS number
25	AS15557	LDCOMNET NEUF CEGETEL (formerly LDCOM NETWORKS)
		AS-22364 - Telefonica USA, Inc.
22	AS6478	ATT-INTERNET3 - AT&T WorldNet Services
		ASN-IINET iiNet Limited
		CORPORACION NACIONAL DE TELECOMUNICACIONES CNT S.A.
19	AS33776	STARCOMMS-ASN

Top 20 Withdrawn Routes this week per Originating AS

Prefixes	AS num	AS Description
-470	AS9299	IPG-AS-AP Philippine Long Distance Telephone Company
-84	AS18747	IFX-NW - IFX Communication Ventures, Inc.
-81	AS16429	MAXIMUMASP - MaximumASP, LLC
-76	AS3449	Universidad Nacional de Buenos Aires
		NORLIGHT - Norlight Telecommunications
-57	AS21021	MULTIMEDIA-AS Multimedia Polska Sp.z o.o.
-57	AS4802	ASN-IINET iiNet Limited
-52	AS6389	BELLSOUTH-NET-BLK - BellSouth.net Inc.
-50	AS11750	Interdotnet Argentina S.A.
-47	AS20299	Newcom Limited
-45	AS5800	DNIC-ASBLK-05800-06055 - DoD Network Information Center

More Specifics

A list of route advertisements that appear to be more specific than the original Class-based prefix mask, or more specific than the registry allocation size.


Top 20 ASes advertising more specific prefixes

More Specifics	Total Prefixes	ASnum	AS Description
4186	4388	AS4323	TWTC - tw telecom holdings, inc.
3931	4063	AS6389	BELLSOUTH-NET-BLK - BellSouth.net Inc.
1806	1859	AS4766	KIXS-AS-KR Korea Telecom
1747	1832	AS1785	AS-PAETEC-NET - PaeTec Communications, Inc.
1571	1578	AS8151	Uninet S.A. de C.V.
1510	1553	AS20115	CHARTER-NET-HKY-NC - Charter Communications
1295	1562	AS7018	ATT-INTERNET4 - AT&T WorldNet Services
1293	1293	AS17488	HATHWAY-NET-AP Hathway IP Over Cable Internet
1277	1286	AS4755	TATACOMM-AS TATA Communications formerly VSNL is Leading ISP
1220	1316	AS2386	INS-AS - AT&T Data Communications Services
1124	1141	AS11492	CABLEONE - CABLE ONE, INC.
1122	1122	AS6478	ATT-INTERNET3 - AT&T WorldNet Services
1088	1126	AS22773	ASN-CXA-ALL-CCI-22773-RDC - Cox Communications Inc.
1076	1082	AS18101	RIL-IDC Reliance Infocom Ltd Internet Data Centre,
1069	1075	AS7011	FRONTIER-AND-CITIZENS - Frontier Communications of America, Inc.
1049	1059	AS18566	COVAD - Covad Communications Co.
1009	1010	AS10620	TV Cable S.A.
1003			VZGNI-TRANSIT - Verizon Internet Services Inc.
996	997	AS9583	SIFY-AS-IN Sify Limited
960	1204	AS3356	LEVEL3 Level 3 Communications

Report: ASes ordered by number of more specific prefixes

Report: More Specific prefix list (by AS)

Report: More Specific prefix list (ordered by prefix)

Announced Prefixes

Rank AS

Rank AS Type Originate Addr Space (pfx) Transit Addr space (pfx) Description
177 AS4755 ORG+TRN Originate: 2079232 /11.01 Transit: 5295616 /9.66 TATACOMM-AS TATA Communications formerly VS

Aggregation Suggestions

AS Name

This report does not take into account conditions local to each origin AS in terms of policy or traffic engineering requirements, so this is an approximate guideline as to aggregation possibilities.

Current Wthdw Aggte Annce Redctn

6 <u>AS4755</u>	TATACOMM-AS TATA Communications formerly VSNL 1286 1104 31 213 1073 83.44%
Prefix	AS Path Aggregation Suggestion
59.151.144.0/22	AS Path Aggregation Suggestion 4777 2497 6453 4755
59.160.0.0/16	4777 2497 6453 4755
59.160.0.0/16	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.4.0/22	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755 4777 2497 6453 4755
59.160.5.0/24	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.8.0/22	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.12.0/22	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.15.0/24	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.16.0/21	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.24.0/21	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.24.0/24	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.28.0/24	4777 2516 6453 4755
59.160.32.0/21	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.34.0/24	4777 2516 6453 4755
59.160.38.0/24	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.40.0/22	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.44.0/22	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.46.0/23	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.48.0/21	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.48.0/24	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.56.0/21	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.64.0/21	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.71.0/24	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.72.0/21	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.73.0/24	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.81.0/24	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.83.0/24	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.88.0/22	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.88.0/24	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
59.160.89.0/24	4777 2497 6453 4755 - Withdrawn - matching aggregate 59.160.0.0/16 4777 2497 6453 4755
160 06 0/00	1777 0107 (152 1755 0111)

Announced Prefixes

Rank AS

```
Rank AS Type Originate Addr Space (pfx) Transit Addr space (pfx) Description
155 AS18566 ORIGIN Originate: 2351104 /10.84 Transit: 0 /0.00 COVAD - Covad Communications Co.
```

Aggregation Suggestions

AS Name

This report does not take into account conditions local to each origin AS in terms of policy or traffic engineering requirements, so this is an approximate guideline as to aggregation possibilities.

Current Wthdw Aggte Annce Redctn

		callend menan ingger immed nearth
8 <u>AS18566</u>	COVAD - Covad Communications Co.	1059 1035 9 33 1026 96.88%
Prefix	NG Doub	Numerotics Commenties
	AS Path 4777 2516 3356 18566	Aggregation Suggestion
64.105.0.0/16		
64.105.0.0/23		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.4.0/23		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.6.0/23		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.8.0/23		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.10.0/23		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.14.0/23		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.16.0/24		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.17.0/24		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.18.0/23		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.20.0/23		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.22.0/23		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.24.0/21		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.32.0/21		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.40.0/23		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.42.0/23		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.44.0/23		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.46.0/23		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.48.0/23		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.50.0/23		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.52.0/23	4777 2516 3356 18566 - Withdrawn - 1	matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.54.0/23	4777 2516 3356 18566 - Withdrawn - 1	matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.56.0/23	4777 2516 3356 18566 - Withdrawn - 1	matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.58.0/23	4777 2516 3356 18566 - Withdrawn - 1	matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.60.0/23	4777 2516 3356 18566 - Withdrawn - 1	matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.62.0/23	4777 2516 3356 18566 - Withdrawn - 1	matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.64.0/23	4777 2516 3356 18566 - Withdrawn - 1	matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.66.0/23	4777 2516 3356 18566 - Withdrawn - 1	matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.68.0/23	4777 2516 3356 18566 - Withdrawn - 1	matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.70.0/23	4777 2516 3356 18566 - Withdrawn - 1	matching aggregate 64.105.0.0/16 4777 2516 3356 18566
64.105.72.0/21		matching aggregate 64.105.0.0/16 4777 2516 3356 18566
C4 105 00 0/00	4888 0516 0056 10566 W'II I	

Importance of Aggregation

Size of routing table

Memory is no longer a problem

Routers can be specified to carry 1 million prefixes

Convergence of the Routing System

This is a problem

Bigger table takes longer for CPU to process

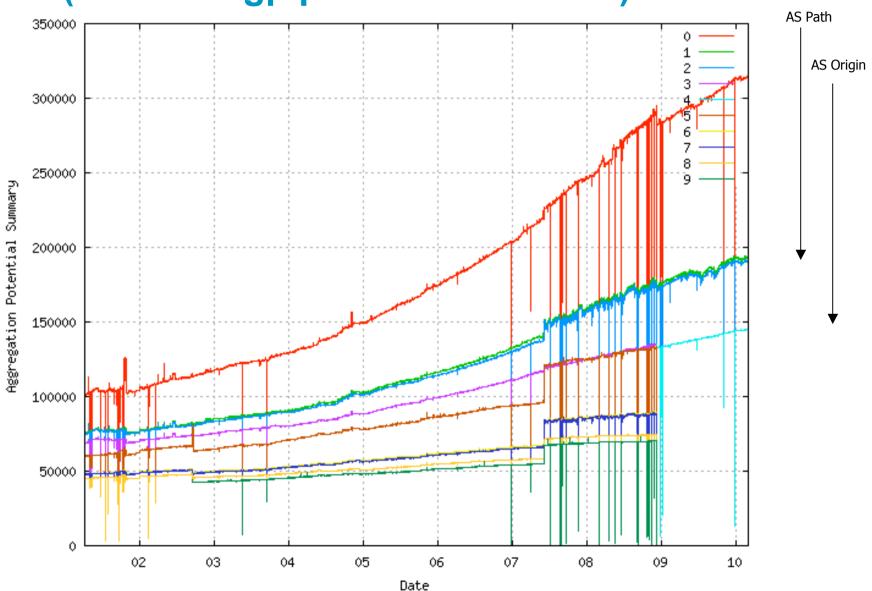
BGP updates take longer to deal with

BGP Instability Report tracks routing system update activity

http://bgpupdates.potaroo.net/instability/bgpupd.html

The BGP Instability Report

The BGP Instability Report is updated daily. This report was generated on 27 February 2010 06:10 (UTC+1000)


50 Most active ASes for the past 7 days

RANK	ASN	UPDs	%	Prefixes	UPDs/Prefix	AS NAME
1	31055	19440	1.94%	4	4860.00	CONSULTIX-AS Consultix GmbH
2	45983	11585	1.16%	8	1448.12	SKUNIV-AS-KR Seokyeong UNIV.
3	9829	10495	1.05%	840	12.49	BSNL-NIB National Internet Backbone
4	31810	10099	1.01%	36	280.53	AOTL-AS
5	14420	9569	0.96%	392	24.41	CORPORACION NACIONAL DE TELECOMUNICACIONES CNT S.A.
6	7738	8886	0.89%	476	18.67	Telecomunicacoes da Bahia S.A.
7	35805	8836	0.88%	581	15.21	UTG-AS United Telecom AS
8	45408	8476	0.85%	2	4238.00	
9	36992	8421	0.84%	630	13.37	ETISALAT-MISR
10	16569	8266	0.83%	2	4133.00	ASN-CITY-OF-CALGARY - City of Calgary
11	17819	7945	0.79%	147	54.05	ASN-EQUINIX-AP Equinix Asia Pacific
12	17974	7387	0.74%	932	7.93	TELKOMNET-AS2-AP PT Telekomunikasi Indonesia
13	26025	7224	0.72%	2	3612.00	COC - City of Calgary
14	29049	7031	0.70%	286	24.58	DELTA-TELECOM-AS Delta Telecom LTD.
15	28878	6984	0.70%	12	582.00	SIGNET-AS Signet B.V.
16	5800	6464	0.65%	263	24.58	DNIC-ASBLK-05800-06055 - DoD Network Information Center
17	8452	6003	0.60%	1004		TEDATA TEDATA
18	33475	5654	0.57%	250	22.62	RSN-1 - RockSolid Network, Inc.
19	8151	5634	0.56%	1598		Uninet S.A. de C.V.
20	27097	5434	0.54%	5	1086.80	DNIC-ASBLK-27032-27159 - DoD Network Information Center
21	9767	5331	0.53%	44	121.16	DONGBUIT-AS-KR Dongbulife Insurance co.,LTD
22	14522	4819	0.48%	348	13.85	Satnet
23	18747	4734	0.47%	254	18.64	IFX-NW - IFX Communication Ventures, Inc.

50 Most active Prefixes for the past 7 days

RANK	PREFIX	UPDs	% Origin AS AS NAME
1	62.168.199.0/24	19418	1.80% 31055 CONSULTIX-AS Consultix GmbH
2	208.98.230.0/24	8265	0.76% 16569 ASN-CITY-OF-CALGARY - City of Calgary
3	208.98.231.0/24	7224	0.67% 26025 COC - City of Calgary
4	214.15.217.0/24	5330	0.49% 27097 DNIC-ASBLK-27032-27159 - DoD Network Information Center
5	193.177.160.0/23	5011	0.46% 28878 SIGNET-AS Signet B.V.
6	114.70.96.0/24	4238	0.39% 45408
7	114.70.97.0/24	4238	0.39% 45408
8	121.65.245.0/24	3603	0.33% 45983 SKUNIV-AS-KR Seokyeong UNIV.
9	199.114.154.0/24	3407	0.32% 1733 CENTAF-SWA - 754th Electronic Systems Group
10	143.138.107.0/24	3183	0.29% 747 TAEGU-AS - Headquarters, USAISC
11	192.12.120.0/24	2714	0.25% 5691 MITRE-AS-5 - The MITRE Corporation
12	202.167.253.0/24		0.25% 17819 – ASN-EQUINIX-AP Equinix Asia Pacific
13	202.177.223.0/24		0.25% 17819 – ASN-EQUINIX-AP Equinix Asia Pacific
14	202.167.247.0/24	2632	0.24% 17819 – ASN-EQUINIX-AP Equinix Asia Pacific
15	91.208.167.0/24	1958	0.18% 28878 - SIGNET-AS Signet B.V.
16	203.249.122.0/24	1894	0.18% 45983 – SKUNIV-AS-KR Seokyeong UNIV.
17	63.84.91.0/24	1825	0.17% 27245 HEIDRICK-CHICAGO - HEIDRICK
18	212.220.14.0/24	1661	0.15% 34875 – YANFES OJSC "Uralsviazinform"
19	117.17.148.0/24	1478	0.14% 45983 SKUNIV-AS-KR Seokyeong UNIV. 4766 KIXS-AS-KR Korea Telecom
20	210.110.40.0/22	1478	0.14% 45983 SKUNIV-AS-KR Seokyeong UNIV. 4766 KIXS-AS-KR Korea Telecom
21	210.110.32.0/21	1478	0.14% 45983 SKUNIV-AS-KR Seokyeong UNIV. 4766 KIXS-AS-KR Korea Telecom
22	203.249.123.0/24	1474	0.14% 45983 - SKUNIV-AS-KR Seokyeong UNIV.
23	196.24.75.0/24	1453	0.13% 2018 TENET-1
24	208.144.230.0/24	1052	0.10% 8346 SONATEL-AS Autonomous System
25	208.154.199.0/24	1039	0.10% 8346 SONATEL-AS Autonomous System
26	208.154.200.0/24	1020	0.09% 8346 SONATEL-AS Autonomous System

Aggregation Potential (source: bgp.potaroo.net/as2.0/)

Aggregation Summary

Aggregation on the Internet could be MUCH better

35% saving on Internet routing table size is quite feasible

Tools are available

Commands on the routers are not hard

CIDR-Report webpage

Receiving Prefixes

Receiving Prefixes

 There are three scenarios for receiving prefixes from other ASNs

Customer talking BGP

Peer talking BGP

Upstream/Transit talking BGP

 Each has different filtering requirements and need to be considered separately

Receiving Prefixes: From Customers

- ISPs should only accept prefixes which have been assigned or allocated to their downstream customer
- If ISP has assigned address space to its customer, then the customer IS entitled to announce it back to his ISP
- If the ISP has NOT assigned address space to its customer, then:

Check the five RIR databases to see if this address space really has been assigned to the customer

The tool: whois

Receiving Prefixes: From Customers

Example use of whois to check if customer is entitled to announce address space:

```
pfs-pc$ whois -h whois.apnic.net 202.12.29.0
              202.12.29.0 - 202.12.29.255
inetnum:
              APNTC-AP-AU-BNE
netname:
descr:
              APNIC Pty Ltd - Brisbane Offices + Servers
descr:
              Level 1, 33 Park Rd
              PO Box 2131, Milton
descr:
descr:
              Brisbane, QLD.
country:
              ΑU
admin-c:
              HM20-AP
                                Portable – means its an assignment
tech-c:
              NO4-AP
                                to the customer, the customer can
mnt-by:
              APNIC-HM
                                announce it to you
              hm-changed@apnic.net 20030108
changed:
              ASSIGNED PORTABLE
status:
              APNIC
source:
```

Receiving Prefixes: From Customers

RIPE

source:

 Example use of whois to check if customer is entitled to announce address space:

```
$ whois -h whois.ripe.net 193.128.2.0
              193.128.2.0 - 193.128.2.15
inetnum:
descr:
              Wood Mackenzie
country:
              GB
admin-c:
              DB635-RIPE
                                        ASSIGNED PA - means that it is
tech-c:
              DB635-RIPE
                                        Provider Aggregatable address space
status:
              ASSIGNED PA
                                        and can only be used for connecting
mnt-by:
              AS1849-MNT
                                        to the ISP who assigned it
              davids@uk.uu.net 20020211
changed:
              RIPE
source:
              193.128.0.0/14
route:
descr:
              PIPEX-BLOCK1
origin:
              AS1849
              routing@uk.uu.net
notify:
mnt-by:
              AS1849-MNT
changed:
              beny@uk.uu.net 20020321
```

Receiving Prefixes: From Peers

 A peer is an ISP with whom you agree to exchange prefixes you originate into the Internet routing table

Prefixes you accept from a peer are only those they have indicated they will announce

Prefixes you announce to your peer are only those you have indicated you will announce

Receiving Prefixes: From Peers

Agreeing what each will announce to the other:

Exchange of e-mail documentation as part of the peering agreement, and then ongoing updates

OR

Use of the Internet Routing Registry and configuration tools such as the IRRToolSet

www.isc.org/sw/IRRToolSet/

Receiving Prefixes: From Upstream/Transit Provider

- Upstream/Transit Provider is an ISP who you pay to give you transit to the WHOLE Internet
- Receiving prefixes from them is not desirable unless really necessary

special circumstances – see later

Ask upstream/transit provider to either:

originate a default-route

OR

announce one prefix you can use as default

Receiving Prefixes: From Upstream/Transit Provider

 If necessary to receive prefixes from any provider, care is required

```
don't accept RFC1918 etc prefixes

http://www.rfc-editor.org/rfc/rfc7535.txt

don't accept your own prefixes

don't accept default (unless you need it)

don't accept prefixes longer than /24
```

Check Team Cymru's bogon pages

http://www.team-cymru.org/Services/Bogons/
http://www.team-cymru.org/Services/Bogons/routeserver.html –
bogon route server

Receiving Prefixes

Paying attention to prefixes received from customers, peers and transit providers assists with:

The integrity of the local network

The integrity of the Internet

Responsibility of all ISPs to be good Internet citizens

Preparing the network

Before we begin...

Preparing the Network

- We will deploy BGP across the network before we try and multihome
- BGP will be used therefore an ASN is required
- If multihoming to different ISPs, public ASN needed: Either go to upstream ISP who is a registry member, or Apply to the RIR yourself for a one off assignment, or Ask an ISP who is a registry member, or Join the RIR and get your own IP address allocation too (this option strongly recommended)!

Preparing the Network Initial Assumptions

- The network is not running any BGP at the moment single statically routed connection to upstream ISP
- The network is not running any IGP at all Static default and routes through the network to do "routing"

Preparing the Network First Step: IGP

- Decide on an IGP: OSPF or ISIS ©
- Assign loopback interfaces and /32 address to each router which will run the IGP

Loopback is used for OSPF and BGP router id anchor Used for iBGP and route origination

Deploy IGP (e.g. OSPF)

IGP can be deployed with NO IMPACT on the existing static routing

e.g. OSPF distance might be 110m static distance is 1

Smallest distance wins

Preparing the Network IGP (cont)

Be prudent deploying IGP – keep the Link State Database Lean!

Router loopbacks go in IGP

WAN point to point links go in IGP

(In fact, any link where IGP dynamic routing will be run should go into IGP)

Summarise on area/level boundaries (if possible) – i.e. think about your IGP address plan

Preparing the Network IGP (cont)

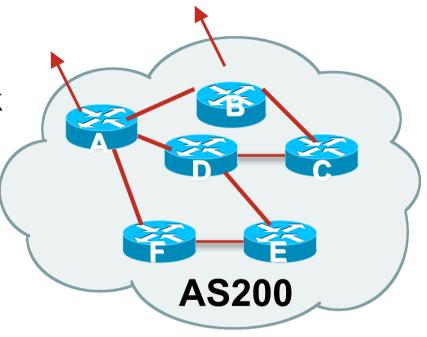
Routes which don't go into the IGP include:

Dynamic assignment pools (DSL/Cable/Dial)

Customer point to point link addressing

(using next-hop-self in iBGP ensures that these do NOT need to be in IGP)

Static/Hosting LANs

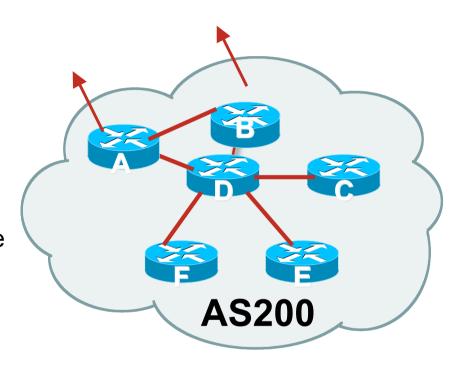

Customer assigned address space

Anything else not listed in the previous slide

Preparing the Network Second Step: iBGP

 Second step is to configure the local network to use iBGP

- iBGP can run on
 all routers, or
 a subset of routers, or
 just on the upstream edge
- iBGP must run on all routers which are in the transit path between external connections



Preparing the Network Second Step: iBGP (Transit Path)

- iBGP must run on all routers which are in the transit path between external connections
- Routers C, E and F are not in the transit path

Static routes or IGP will suffice

 Router D is in the transit path
 Will need to be in iBGP mesh, otherwise routing loops will result

Preparing the Network Layers

Typical SP networks have three layers:

Core – the backbone, usually the transit path

Distribution – the middle, PoP aggregation layer

Aggregation – the edge, the devices connecting customers

Preparing the Network Aggregation Layer

iBGP is optional

Many ISPs run iBGP here, either partial routing (more common) or full routing (less common)

Full routing is not needed unless customers want full table

Partial routing is cheaper/easier, might usually consist of internal prefixes and, optionally, external prefixes to aid external load balancing

Communities and peer-groups make this administratively easy

Many aggregation devices can't run iBGP

Static routes from distribution devices for address pools IGP for best exit

Preparing the Network Distribution Layer

Usually runs iBGP

Partial or full routing (as with aggregation layer)

But does not have to run iBGP

IGP is then used to carry customer prefixes (does not scale)

IGP is used to determine nearest exit

Networks which plan to grow large should deploy iBGP from day one

Migration at a later date is extra work

No extra overhead in deploying iBGP, indeed IGP benefits

Preparing the Network Core Layer

- Core of network is usually the transit path
- iBGP necessary between core devices
 Full routes or partial routes:
 Transit ISPs carry full routes in core
 Edge ISPs carry partial routes only
- Core layer includes AS border routers

Decide on:

Best iBGP policy

Will it be full routes everywhere, or partial, or some mix?

iBGP scaling technique

Community policy?

Route-reflectors?

Techniques such as peer groups and peer templates?

Then deploy iBGP:

Step 1: Introduce iBGP mesh on chosen routers make sure that iBGP distance is greater than IGP distance (it usually is)

Step 2: Install "customer" prefixes into iBGP

Check! Does the network still work?

Step 3: Carefully remove the static routing for the prefixes now in IGP and iBGP

Check! Does the network still work?

Step 4: Deployment of eBGP follows

Install "customer" prefixes into iBGP?

- Customer assigned address space
 Network statement/static route combination
 Use unique community to identify customer assignments
- Customer facing point-to-point links

Redistribute connected through filters which only permit point-to-point link addresses to enter iBGP

Use a unique community to identify point-to-point link addresses (these are only required for your monitoring system)

Dynamic assignment pools & local LANs

Simple network statement will do this

Use unique community to identify these networks

Carefully remove static routes?

Work on one router at a time:

Check that static route for a particular destination is also learned by the iBGP

If so, remove it

If not, establish why and fix the problem

(Remember to look in the RIB, not the FIB!)

- Then the next router, until the whole PoP is done
- Then the next PoP, and so on until the network is now dependent on the IGP and iBGP you have deployed

Preparing the Network Completion

Previous steps are NOT flag day steps

Each can be carried out during different maintenance periods, for example:

Step One on Week One

Step Two on Week Two

Step Three on Week Three

And so on

And with proper planning will have NO customer visible impact at all

Preparing the Network Example Two

- The network is not running any BGP at the moment single statically routed connection to upstream ISP
- The network is running an IGP though All internal routing information is in the IGP By IGP, OSPF or ISIS is assumed

Preparing the Network IGP

- If not already done, assign loopback interfaces and /32 addresses to each router which is running the IGP
 - Loopback is used for OSPF and BGP router id anchor
 - Used for iBGP and route origination
- Ensure that the loopback /32s are appearing in the IGP

Preparing the Network iBGP

- Go through the iBGP decision process as in Example One
- Decide full or partial, and the extent of the iBGP reach in the network

Then deploy iBGP:

Step 1: Introduce iBGP mesh on chosen routers make sure that iBGP distance is greater than IGP distance (it usually is)

Step 2: Install "customer" prefixes into iBGP

Check! Does the network still work?

Step 3: Reduce BGP distance to be less than the IGP (so that iBGP routes take priority)

Step 4: Carefully remove the "customer" prefixes from the IGP Check! Does the network still work?

Step 5: Restore BGP distance to less than IGP

Step 6: Deployment of eBGP follows

Install "customer" prefixes into iBGP?

- Customer assigned address space
 - Network statement/static route combination
 - Use unique community to identify customer assignments
- Customer facing point-to-point links
 - Redistribute connected through filters which only permit point-to-point link addresses to enter iBGP
 - Use a unique community to identify point-to-point link addresses (these are only required for your monitoring system)
- Dynamic assignment pools & local LANs
 - Simple network statement will do this
 - Use unique community to identify these networks

Carefully remove "customer" routes from IGP?

Work on one router at a time:

Check that IGP route for a particular destination is also learned by iBGP

If so, remove it from the IGP

If not, establish why and fix the problem

(Remember to look in the RIB, not the FIB!)

- Then the next router, until the whole PoP is done
- Then the next PoP, and so on until the network is now dependent on the iBGP you have deployed

Preparing the Network Completion

Previous steps are NOT flag day steps

Each can be carried out during different maintenance periods, for example:

Step One on Week One

Step Two on Week Two

Step Three on Week Three

And so on

And with proper planning will have NO customer visible impact at all

Preparing the Network Configuration Summary

- IGP essential networks are in IGP
- Customer networks are now in iBGP iBGP deployed over the backbone Full or Partial or Upstream Edge only
- BGP distance is greater than any IGP
- Now ready to deploy eBGP

Configuration Tips

Of passwords, tricks and templates

iBGP and IGPs Reminder!

- Make sure loopback is configured on router iBGP between loopbacks, NOT real interfaces
- Make sure IGP carries loopback /32 address
- Consider the DMZ nets:

Use unnumbered interfaces?

Use next-hop-self on iBGP neighbours

Or carry the DMZ /30s in the iBGP

Basically keep the DMZ nets out of the IGP!

iBGP: Next-hop-self

- BGP speaker announces external network to iBGP peers using router's local address (loopback) as nexthop
- Used by many ISPs on edge routers

Preferable to carrying DMZ /30 addresses in the IGP

Reduces size of IGP to just core infrastructure

Alternative to using unnumbered interfaces

Helps scale network

Many ISPs consider this "best practice"

Limiting AS Path Length

 Some BGP implementations have problems with long AS_PATHS

Memory corruption

Memory fragmentation

 Even using AS_PATH prepends, it is not normal to see more than 20 ASes in a typical AS_PATH in the Internet today

The Internet is around 5 ASes deep on average

Largest AS_PATH is usually 16-20 ASNs

Limiting AS Path Length

Some announcements have ridiculous lengths of ASpaths:

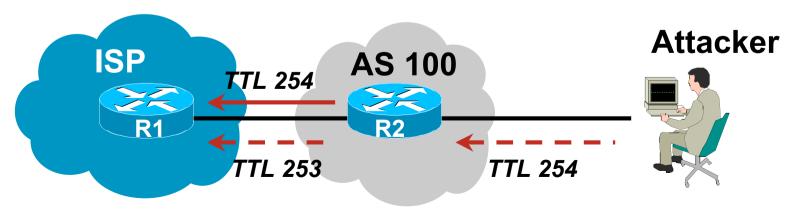
This example is an error in one IPv6 implementation

```
*> 96.27.246.0/24 2497 1239 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12026 12
```

This example shows 21 prepends (for no obvious reason)

 If your implementation supports it, consider limiting the maximum AS-path length you will accept

BGP TTL "hack"


Implement RFC5082 on BGP peerings

(Generalised TTL Security Mechanism)

Neighbour sets TTL to 255

Local router expects TTL of incoming BGP packets to be 254

No one apart from directly attached devices can send BGP packets which arrive with TTL of 254, so any possible attack by a remote miscreant is dropped due to TTL mismatch

BGP TTL "hack"

TTL Hack:

Both neighbours must agree to use the feature TTL check is much easier to perform than MD5 (Called BTSH – BGP TTL Security Hack)

Provides "security" for BGP sessions

In addition to packet filters of course

MD5 should still be used for messages which slip through the TTL hack

See www.nanog.org/mtg-0302/hack.html for more details

Templates

Good practice to configure templates for everything

Vendor defaults tend not to be optimal or even very useful for ISPs

ISPs create their own defaults by using configuration templates

eBGP and iBGP examples follow

Also see Team Cymru's BGP templates

http://www.team-cymru.org/ReadingRoom/Documents/

iBGP Template Example

- iBGP between loopbacks!
- Next-hop-self
 Keep DMZ and external point-to-point out of IGP
- Always send communities in iBGP
 Otherwise accidents will happen
- Hardwire BGP to version 4 Yes, this is being paranoid!

iBGP Template Example continued

Use passwords on iBGP session

Not being paranoid, VERY necessary

It's a secret shared between you and your peer

If arriving packets don't have the correct MD5 hash, they are ignored

Helps defeat miscreants who wish to attack BGP sessions

 Powerful preventative tool, especially when combined with filters and the TTL "hack"

eBGP Template Example

BGP damping

Do **NOT** use it unless you understand the impact Do **NOT** use the vendor defaults without thinking

- Remove private ASes from announcements
 Common omission today
- Use extensive filters, with "backup"
 - Use as-path filters to backup prefix filters
 - Keep policy language for implementing policy, rather than basic filtering
- Use password agreed between you and peer on eBGP session

eBGP Template Example continued

- Use maximum-prefix tracking
 - Router will warn you if there are sudden increases in BGP table size, bringing down eBGP if desired
- Limit maximum as-path length inbound
- Log changes of neighbour state
 - ...and monitor those logs!
- Make BGP admin distance higher than that of any IGP Otherwise prefixes heard from outside your network could override your IGP!!

Summary

- Use configuration templates
- Standardise the configuration
- Be aware of standard "tricks" to avoid compromise of the BGP session
- Anything to make your life easier, network less prone to errors, network more likely to scale
- It's all about scaling if your network won't scale, then it won't be successful

BGP Techniques for Internet Service Providers

Philip Smith <pfs@cisco.com>

APRICOT 2010

Kuala Lumpur

23rd February - 5th March