
Hervey Allen
Phil Regnauld

26 February 2009
Manila, Philippines

http://nsrc.org/tutorials/2009/apricot/dnssec/

DNSSEC Tutorial:
Public / Private Key Refresher

Public-Private Keys Refresher

 Ciphers
 Ciphertext
 Symmetric Cipher / Private Key
 Public Key
 Hashing functions
 Hash / message digest
 Digital Signatures

Why rsa vs. dsa, sha-1 or sha-256 vs. md5?

Ciphers ==> ciphertext

 We start with plaintext. Something you can read.
 We apply a mathematical algorithm to the

plaintext.
 The algorithm is the cipher.
 The plaintext is turned in to ciphertext.
 Almost all ciphers were secret until recently.
 Creating a secure cipher is HARD.

Keys

 To create ciphertext and turn it back to plaintext
we apply a key to the cipher.

 The security of the ciphertext rests with the key.
This is a critical point. If someone obtains your
key, your data is compromised.

 This type of key is called a private key.
 This type of cipher system is efficient for large

amounts of data.
 This is a symmetric cipher.

Symmetric Cipher

 Private Key/Symmetric Ciphers

clear
text

clear
text

cipher
text

K K

The same key is used to encrypt the document before
sending and to decrypt it once it is received

Features of Symmetric Ciphers

● Fast to encrypt and decrypt, suitable for large
volumes of data.

● A well-designed cipher is only subject to brute-force
attack; the strength is therefore directly related to the
key length.

● Current recommendation is a key length of at least
90 bits. Symmetric Ciphers in use exceed this
length:

● 3DES = 112 bits, Blowfish = 128 bits, etc.

● Problem - how do you distribute the keys?

Public / Private Keys

 We generate a cipher key pair. One key is the
private key, the other is the public key.

 The private key remains secret and should be
protected.

 The public key is freely distributable. It is related
mathematically to the private key, but you cannot
(easily) reverse engineer the private key from the
public key.

 Use the public key to encrypt data. Only someone
with the private key can decrypt the encrypted
data.

Example Public / Private Key Pair

clear
textk1

(public key)

k2

(private key)

cipher
text

One key is used to encrypt the document,
a different key is used to decrypt it.

This is a big deal!

Issues

 Symmetric ciphers (one private key) are
much more efficient. About 1000x more efficient
than public key algorithms for data transmission!

 Attack on the public key is possible via chosen-
plaintext attack. Thus, the public/private key pair
need to be large (2048 bits).

 For larger data transmissions than used in
DNSSEC we use hybrid systems. That's another
discussion.

One-Way Hashing Functions

 A mathematical function that generates a fixed
length result regardless of the amount of data
you pass through it. Generally very fast.

 You cannot generate the original data from the
fixed-length result.

 Hopefully you cannot find two sets of data that
produce the same fixed-length result. If you do
this is called a collision.

One-Way Hashing Functions
cont.

Some popular hashing functions include:
− md5: Outputs 128 bit result. Fast. Collisions found.
− sha-1: Outputs 160 bits. Slower. Collisions in 2x69.
− sha-2: Outputs 224-512 bits. Slower. Collisions

expected (2x80 attack).
− sha-3: TBA: Currently in development via a new NIST

Hash Function Competition.

Applying a hashing function to plaintext is called
munging the document.

The fixed-length result is referred to as a
checksum, fingerprint, message digest, etc.

Hashing
One-Way Encryption

clear
text

Munging the document gives a short
message digest (checksum). Not possible to go

back from the digest to the original document.

Fixed length hash
or message digest

hashing
function

Hashing
another example

Note the significant change in the hash sum for minor changes in the
input. Note that the hash sum is the same length for varying input
sizes. This is extremely useful.

*Image courtesy Wikipedia.org.

What use is this?

● You can run many megabytes of data through a
hashing function, but only have to check a fixed
number of bits of information (160-512 bits). A
compact and unique document signature.*

● You can generate a passphrase for your data – such
as your encrypted private key. If someone gets your
private key, they still must know your passphrase to
decrypt anything using your private key.

Protecting the Private Key

k2

(encrypted
on disk)

Passphrase
entered by

user

k2
ready

for use

hash

symmetric
cipher

key

K2
= private
key

*Such as SHA-1,SHA-2
etc.

Checking
passphrases/passwords

Q.) How do you do this?
A.) It's very simple.

− Type in a passphrase/password.
− Run the hashing function on the text.
− If the message digest matches, you typed in the

correct passphrase/password.

Digital Signatures

Let's reverse the role of public and private keys. To
create a digital signature on a document do:

− Munge a document.
− Encrypt the message digest with your private key.
− Send the document plus the encrypted message digest.
− On the other end munge the document and decrypt the

encrypted message digest with the person's public key.
− If they match, the document is authenticated.

When Authenticating:

Take a hash of the document and encrypt only that.
An encrypted hash is called a "digital signature"

k2 k1

digital
signature

COMPARE

hash hash

(public)(private)

Our Original Question
Revisited

Let's answer our original question...

Why rsa vs. dsa, sha-1 or sha-256 vs. md5?

 rsa can do 2048 bits and greater
 dsa max bits is 1024
 md5 has collisions
 sha-1 / sha-2 collisions expected, but more

secure for the moment.

Conclusion

 Public / Private keys
 Message digests
 Digital signatures

Are at the core of DNSSEC. If these do not make
sense, then DNSSEC will not make sense.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Hashing One-Way Encryption
	Hashing - one-way encryption: another example
	q.) so what use is this?
	Protecting the Private Key cont.
	Slide 16
	Slide 17
	When authenticating
	Slide 19
	Slide 20

