
1

IPv6 Tutorial
kurtis@netnod.se

About me

• Operator background

• Started two ISPs, worked for EUnet/KPNQwest
1997-2002 as among other things responsible for
network architecture

• Currently CEO of Netnod/Autonomica

• Member of the IAB since 3 years

• Chair of Euro-IX and SOF

• WG chair in IETF and RIPE

3

Background

4

The Internet emerges

5

The background of IPv6

• Original IPv4 address plan was non-CIDR

• I.e the addresses was split in A (/8), B (/16), C
(/24) - which was supposed to correspond to
the different needs of different users

• The address blocks was originally handed out
more or less arbitrary

• During the beginning of the 1990:s this
lead to concerns that we where running
out of IPv4 addresses

IPv4 Prognosis

• How much IPv4 space do we have?

• When will we run out?

• Based on http://www.potaroo.net/tools/ipv4/

The date predicted by this model where the IPv4 unallocated address
pool will be exhausted is 09-Jul-2012. A related prediction is the
exhaustion of the IANA IPv4 unallocated address pool, which this
model predicts will occur on 31-Mar-2011.

Projections

• Projections are really hard for a number of
factors

• This is just a summary of the issues involved

• You really should study Geoff’s data first hand
to make up your mind

8

The background of IPV6
• A first step was the introduction of CIDR

• I.e a assigned address block could have any length

• Described in 1993 in RFC1517 and RFC1519

• Also required a interdomain routing protocol that could handle
it - BGP v4

• RFC1654 in July 1994

• Implemented during 1995

• In parallel in 1992, discussions about a new addressing model and
address plan started

• The first suggestion was based on the ISO OSI model

• Hard resistance lead to the suggestion being withdrawn

9

The background of IPv6

• IETF in July 1992 decided to make an estimate of the
Internets future size and addressing needs

• 2020 : 10 Billion people

• 100 computers per person

• To leave room for errors and sparse allocations, it
was decided that the needs would be

• 10^15 computers

• 10^12 networks

10

The background of IPv6
A number of proposals was developed

• TUBA

• Would eventually be known as IPv9

• IAE

• Nimrod

• EIP

• PIP

• Would eventually be known as IPv8

• SIP

• TP/IX

• Would eventually be known as IPv7

2006-01-10
 © 2006 - Netnod AB

http://www.netnod.se/11

The background of IPv6
• The various proposals where developed and evolved

through the merger of ideas

• Eventually three would remain

• OSI

• IPv7: TP/IX by Robert Ullman

• Also waned to modify TCP

• Was compatible with IPv4, CLNP and IPX

• IP in IP: A mix of proposals, among others Steve Deering’s SIP, PiP
och IPAE

• The IPng working group in June 1994 decided to use IP in
IP as base

• However the address-size was changed to 128-bits

• The new proposal was called IPv6

12

IPv6 design and addressing

13

IPv4 header
Version TOS Total Length

Fragment ID
D
F

M
F

Fragment offset

TTL Protocol

IHL

Header Checksum

Source Address

Destination Address

(Option Line 10)

(Option Line 1)

1 4 8 12 16 20 24 28 32

14

IPv6 header
IP

version

Traffic

Class
Flow label

Payload length
Next

Header
Hop Limit

Source Address

Destination Address

1 4 8 12 16 20 24 28 32

15

The IPv6 packet format - main
differences

• All fields are of a predefined and static size

• Faster processing

• No “Initial Header Length” (IHL) needed

• Instead a number of “extension headers” are defined

• Header checksum is removed

• Speeds up processing of packets in intermediary hops, as no
new checksum calculation is needed

• Packets can in theory be misrouted due to bit errors, but
the risk is extremely low

• The payload often has it own checksums

16

The IPv6 packet format - main
differences

• Fragmentation is gone

• IPv6 will only send packets after first having
performed Path Maximum Transmission Unit
Discovery, PMTUD

• IPv6 does not have a TOS field

• The fields have changed names

• Packet length -> Payload length

• Protocol type -> Next header

• Time to live -> Hop Limit

17

IPv6 extension headers

Hop-by-Hop

IPv6

Upper layer

Destination

Routing

Fragmentation

Authententication

Security

Destination

Processed by all nodes

Encryption/Decryption of the rest of the packet

Processed by all routers in ”routing”

List of routers that the packets need to pass
Processed by the receiver
Processed after the packet has been reassembled

Processed by the receiver

18

IPv6 extension headers
• Extension headers are a list of headers

IPv6 header
Next Header=TCP

TCP Header+Data

IPv6 header
Next Header=Routing

Routing Header
Next Header=TCP

TCP Header+Data

IPv6 header
Next Header=Routing

Routing Header
Next Header=Fragement

Fragment Header
Next Header=TCP

TCP Header+Data

19

IPv6 extension headers

• The “Next header” coding is the same as for “payload
type”, and the IPv4 codes are used in IPv6 as well

• Most are the same but with minor differences :

• 0: Reserved (IPv4)/ Hop-by-Hop options (IPv6)

• 1: ICMP (IPv4)

• 2: IGMP (IPv4)

• 3: ICMP (IPv6)

• 59: No next header (IPv6)

Routing type 0
extension header

Address[0]

Address[1]

Next Header Header Length Routing Type=0 Segments Left

Reserved

1 4 8 12 16 20 24 28 32

21

Routing type 0
extension header

• Was original intended as equivalent to source
routing in IPv4

• Although drawbacks where know the
goal was to keep as much of the
functionality as possible from IPV4 in the
case it was being used

• However it was (re-)discovered for IPv6 that
source routing is a really bad idea

• And it got depracted

22

IPv6 extension headers -
Fragmentation

• Contrary to IPv4, no fragmentation by intermediate
systems is done

• E.g. If a packet is to large for a given link the
intermediate node in IPv4 will fragment the packet

• In IPv6 PMTUD must be done before sending a
packet to a destination

• An applications can however request to send a
packet that is larger than the discovered

• Fragmentation will then occur at the source host

23

IPv6 extension headers -
Fragmentation

Next Header
Identification

Reserved Fragmentation OffsetResM

Fragementation header

24

IPv6 extension headers -
Destination option

• If we want to add functionality to IPv6 in the future, we
could add new extension headers

• This would however use up more of the 255 available
“Next header” codes

• It would require that both sender and receiver
understands the code

• Requires that intermediate node such as firewalls
understands the code

• Instead we can use the “Destination option” extenstion
header

• “Undefined” header to be used in the future

25

IPv6 extension headers -
Destination option

Next HeaderHdr Ext Len

Options

26

IPv6 extension headers -
Destination option

• The receiver will decode the header

• If the receiver does not understand the
header, or the the data (or it is not what it
expected), the receiver will send a ICMP
”Unrecognized type” packet back to the
sender

• Today only two “byte-padding” types are
defined

27

IPv6 extension headers -
Hop-by-Hop

• All other extension headers will be processed
by the final destination

• The hop-by-hop header will be processed by
intermediary nodes

• Hop-by-hop have exactly the same coding as
the “Destination option” header

28

IPv6 extension headers -
Hop-by-Hop

Next HeaderHdr Ext Len

Options

29

IPv6 and Flows
• A flow is a sequence of packets, sent from a single

destination to a unicast, multicast or anycast destination that
the source decides to label as a flow

• Traditionally classified as

• (src, dst, src port, dst port, protocol type)

• Does not really work in IPv6

• Some of those can be encrypted, fragmented or in
anohter extension header

• For processing of the traditional definition the
implementations are also dependent on understanding
the transport protocol in use

• The IPv6 flow label field specified in RFC3697

30

IPv6 Flows

IP
IP Phone

IP
IP Phone

IP
IP Phone

(1
9
2
.1

6
8
.1

.1
, 1

9
2
.1

6
8
.1

.2
, 8

0
, 3

1
6
5
, 6

)

IP
IP Phone

(192.168.1.3, 192.168.1.4, 5060, 31300,6)

(1
92.1

68.1
.5

, 1
92.1

68.1
.6

, 2
5, 2

300,6
)

(1
9
2
.1

6
8
.1

.6
, 1

9
2
.1

6
8
.1

.7
, 5

0
6
0
, 3

1
3
0
0
,6

)

31

IPv6 and Flows
• IPv6 instead uses

• (src, dst, flow label)

• The flow label is a 20-bit field in the IPv6 header

• A zero value indicates that a packet is not part of any particular
flow

• Nodes must assume that there is no semantic meaning of the flow
lable

• Receiving nodes must not assume that a packet arriving
120s or more after last one with the same flow label is
part of the same flow

• Unless state is manged/signaled in some other way

• Flow labelling makes no assumption on packet re-ordering

32

IPv6 and flows
• Source nodes must make sure that there is no

unintentional reuse of flow labels

• Should assign flow labels in sequence

• Theft of Service / Denial of Service

• An attacker could possibly make use of resources that are
reserved for a specific flow, by modifying flow labels

• This could be taken to a denial of service attack

• As the flow label is part of the IPv6 header, it is not
protected or authenticated, which means it is not more
secure than a src/dst address

• Unless IPsec tunnel mode is used

• Ingress filtering might give some security

33

IPv6 security

• In IPv4 secure (encrypted) tunnels are built
using IP-Sec

• IPv6 have similar functions built in

• Authentication header is used to verify the sender

• The Security header to protect the content from a
third party

• But the security is the same for IPv6
and IPv4!!!!

34

IPv6 security

HostHost

Host

unreliable network

Host

Security
gateway

VPN
VPN

Security
gateway

35

IPv6 Security - Authentication

Extension hdrsIPv6 Auth Payload

• An extension header as the others

• Will be added after the other headers, but
before the payload

• The authentication header is defined in a
separate RFC, 2402

• Used to be part of the IPv6 specification

36

IPv6 Security -
Authentication

Next Header Payload len Reserved
Security Parameters Index

Authentication Data (Variable number of 32-bit words)
Sequence number field

37

IPv6 Security -
Authentication

• Next Header

• Next header coding

• Payload length

• Length of the header and data

• Reserved

• Reserved for future use. Must be set to zero

• Security Parameter Index (SPI)

• Arbitrary 32-bit value that together with the destination IP
and the security protocol uniquely identifies the security
association

38

IPv6 Security -
Authentication

• Sequence number

• Unsigned 32-bit that is a monotonically increasing counter

• Used to prevent replay attacks

• Initialized to zero when the security association is established

• Must never be allowed to cycle

• Authentication data

• Variable length field

• Contains the Integrity Check Value (ICV) for the packet

• What authentication algorithm used for the ICV is determined by the SA (DES, MD5, SHA-1, etc)

• ICV is calculated over

• IP header fields that does not change in transit or the value at the end point can be predicted

• The AH

• Upper layer data

• What packets get an AH is determined by the SA (IPsec part of the stack)

2006-01-10
 © 2006 - Netnod AB

http://www.netnod.se/39

IPv6 security -
Encryption

Extension hdrsIPv6 SecurityEncrypted payload

• Yet another extension header…

• …the last one to be added, and that can be read in
clear text

• How encryption is done is dependent on the crypto
algorithm in use

• For more information see RFC2406

40

IPv6 security - Encryption

41

IPv6 security - Encryption

• Security Parameter Index (SPI)

• Arbitrary 32-bit value that together with the destination IP and the security
protocol uniquely identifies the security association

• Sequence number

• Unsigned 32-bit that is a monotonically increasing counter

• Used to prevent replay attacks

• Initialized to zero when the security association is established

• Must never be allowed to cycle

• Payload data

• The data to be encrypted

• Which encryption algorithm that is used is part of the SA

• If the encryption algorithm needs a Initialization Vector that is stored in the
payload data field

42

IPv6 security - Encryption
• Padding

• Some block chiper algorithms needs that data to be of the block size (or multiples
thereof)

• The padding length and next header fields needs to be right aligned

• Can also be used to conceal the actual length of the message for traffic flow
confidentiality

• Padding length

• The length of the padding field

• Next header

• Indicates the type data in the payload field

• Either a next-header or a upper layer protocol

• Authentication data

• Optional ICV calculated over the ESP packet

• Same as for AH

• Only calculated if required by the SA

43

IPv6 Quality of Service

• In IPv4 we have DiffServ and IntServ that
make use of the TOS field

• In IPv6 there is “traffic class” that is used for
the same functionality

• Standardization is on-going

44

IPv6 Design and addressing
• IPv6, 128-bits -> A lot of text…

• Three ways to write IPv6 addresses

• Most common is

 X:X:X:X:X:X:X:X

 Where X is the Hex representation of a 16-bit octet

• Example

 FEDC:BA98:7654:3210:FEDC:BA98:7654:3210

 1080:0:0:0:8:800:200C:417A

Note that you do not have to write the leading zeros in
each group

45

IPv6 Design and addressing
– Due to the nature of IPv6 addressing, most addresses will have

groups of zeros as well as lot’s of leading zeros. To simplify could
can compress a group of zeros with ”::”

• Example
 1080:0:0:0:8:800:200C:417A

Can be written as

 1080::8:800:200C:417A

Note that you can only write one pair of ::

 0:0:0:0:0:0:0:0

Written as

::

46

IPv6 Design and addressing

• Address prefixes and subnets works and are
written exactly as in IPv4

12AB:0000:0000:CD30:0000:0000:0000:0000/60

12AB::CD30:0:0:0:0/60

12AB:0:0:CD30::/60

• All are valid

47

IPv6 Address types
• The IPv6 address type is defined by the prefix bits as
 Allocation Prefix Fraction of
 (binary) Address Space

----------------------------------- -------- -------------

 Unassigned (see Note 1 below) 0000 0000 1/256
 Unassigned 0000 0001 1/256

 Reserved for NSAP Allocation 0000 001 1/128 [RFC1888]

 Unassigned 0000 01 1/64

 Unassigned 0000 1 1/32

 Unassigned 0001 1/16
 Global Unicast 001 1/8 [RFC2374]

 Unassigned 010 1/8

 Unassigned 011 1/8

 Unassigned 100 1/8

 Unassigned 101 1/8
 Unassigned 110 1/8

 Unassigned 1110 1/16

 Unassigned 1111 0 1/32

 Unassigned 1111 10 1/64

 Unassigned 1111 110 1/128
 Unassigned 1111 1110 0 1/512

 Link-Local Unicast Addresses 1111 1110 10 1/1024

 IANA - Reserved (Formerly Site-Local) 1111 1110 11 1/1024 [RFC3879]

 Multicast Addresses 1111 1111 1/256

48

IPv6 addresses

• Only IPv6 addresses of the “unspecified”
type, “loopback address” and IPv6 addresses
with embedded IPv4 addresses have the
prefix 000

• Apart from above, IANA should only do
delegation from the “001” prefix

• Leaves 85% of the IPv6 addresses for future
use

49

Scoped addresses
• When developing IPv6, the idea that addresses

should have a certain “validity”, or “scope” was
launched

• That is, an area of validity/scope where the
addresses are guaranteed to be unique

• Similar mechanisms are used in multicast

• Scoped streams

• In IPv4 there is/was similar mechanisms as well

• RFC1918

• Link local addresses (169.254.0.0/16)

50

IPv6 scope
• For IPv6, three scoped where defined

• Global

• As with all unicast addresses, these are globally unique addresses, assigned
from a registry (e.g LIR)

• Link-local

• Addresses that are unique on the link in question. These addresses are
calculated and assigned by the interface itself

• This means that a node can have an IPv6 address and communicate with
others on the local network without the presence of a router or server

• Routers are not allowed to forward packets with a link local address as
source or destination address - to destinations off the link

51

Site-local
• Originally there was also something called

“site-local”

• The idea was that these where addresses that
where unique within a site or network
• Compare with RFC1918

• However a site or network i never specified

• But the experiences with NAT/RFC1918
deterred quite a few people
• An the source address selection problem was hard

enough, without site-local

52

Site-local

53

Site-local
• The debate that followed was among the hardest and

longest in many years…

• It was finally decided that site-locals should be
deprecated

• A number of scenarios that actually would have
benefited from site-local was however still unsolved

• “The research ship” - A network that is not connected to
any other network except when the ship is in port. The ship
must till be able to communicated within, independent on an
external connection

• Airplanes

• The solution that was decided on is called “Unique
Local IPv6 Unicast addresses”

54

ULAs
• There where two versions proposed

• Locally assigned

• Centrally assigned

• Of these only locally assigned are standardised

• RFC4193

• These addresses must never be routed globally

• They will be assigned from a globally unique prefix

• This will make it easier to filter them out

• The idea is that these addresses should be used by networks that will
never be connected to the global Internet, but that still might want to
interconnect between them

• If they are leaked outside their domain in either the DNS or in the
global routing system, they are still unique “enough” not to cause harm

• Applications can threat them as globally unique addresses

55

ULAs

• Prefix
• The globally unique prefix, proposed to be FC00::/7

• L
• Locally/Centrally assigned prefix

• Global ID
• The globally almost unique prefix that was generated

• Subnet ID
• Subnet ULA block

• Interface identifier
• EUI64 or RFC3401

56

ULAs
• The algorithm for generating the globally “unique” prefix is

• Actual time through NTP

• The local EUI64 address, alternatively anther local unique ID

• Add the EUI64 address with the actual time to create a hash key

• Calculate a SHA-1 has of the key

• Use the last 40-bits of the hash as a global ID

• Add FC00::/7 and the bit indicating if this is a locally or globally unique
prefix

• The prefix will be globally “unique” if it is registered in a
database

• Fairly controversial at the moment

57

IPv6 Addressing - 6bone
• In order to “practice” transition an early IPv6 network was

created , the 6bone

• 6bone addresses where handed out to anyone who asked

• 3FFE::/16 was set aside for a “6bone registry”

• The 6bone was built as an overlay network of tunnels between
routers and hosts

• Unfortunately there where several drawbacks with the 6bone

• No-one applied for IPv6 addresses from the RIR/LIRs as these where harder
to get

• The tunnels often led to fairly sub-optimal routing

• In principle the 6bone led to a slower IPv6 adoption

• It was also in the risk of creating a new “swamp space”

58

IPv6 Addressing - 6bone

• To get away from a tunnelled 6bone network, it was
decided that

• Since January 1th 2004, no new pTLAs were assigned

• As of June 6 2006 the 6bone pTLAs are no longer
valid and should not be routed

• The 6bone prefix will then be “given back” to the
IANA

• The idea is that 3FFE::/16 should be reused

• One of the thoughts with migrating away from the
6bone is that more people will ask their ISPs for IPv6
addresses and connectivity, therefore creating a market

59

IPv6 Unicast addresses

60

IPv6 Unicast addresses
• For IPv6 unicast addresses, the last 64-bits should be the interface address

• Specified in RFC3513, IPv6 Addressing Architecture

• EUI64 coded, but as “modified EUI64”

• Inverted ’g’ bit

• Indicates globally or locally unique EUI64 address

• The ‘U’ bit will mark if this is a unique address or not

• Applies to all unicast addresses except those staring with 000

EUI64 encoding

00 14 51 01 FC 36

00 14 51 01 FC 36FF FE

0000000X0 X = 1, Globally Unique

X=0, Globally not unique

2001:670:87:1 :2:14:51 FFFE 01FC36

62

Discussion on EUI64 coding

• A EUI64 address is unique per interface and
therefore the per host

• Some say this is a threat to integrity

• On the other hand, a IP address in itself is fairly
revealing

• A EUI64 address can also be set to what you want

63

RFC4941
• More solutions to the integrity problem

• Change MAC address periodically

• A lot of work

• Use DHCP

• Generate other EUI64 addresses over time

• RFC3041 describes the latter

• Generate a temporary interface identifier per interface

• Can be used to generate multiple addresses

• Changes over time

• Describes two algorithms

• With stable storage

• Without stable storage

64

RFC4941
• Stable storage

• Take the historical value from the last “round”. If non exists, generate a (pseudo)
random number

• Calculate the MD5 value of the previous value

• Take the 64 leftmost bits. Set bit 6 to 0

• Use it as temporary interface ID

• Store the rightmost 64 bits as historical value

• Without stable storage a (pseudo) random number will always be
used for the first stage

• The advantage with the algorithm is that it can be hard to generate
really random numbers

• A new interface ID is generated when valid lifetime for the prefix
expires

65

IPv6 ‘special’ addresses
• The unspecified address

• Looks like an IPv4 deafult route, but it isn’t

0:0:0:0:0:0:0:0/128

• Used as source address by nodes before they have their own
address (For example autodiscovery)

• Must never be forwarded

• Loopback address

0:0:0:0:0:0:0:1/128

• Same as in IPv4

Point to point link addressing
• RFC3513 says that all nodes should use EUI64 coded

interface identifiers in the rightmost 64 bits

• This means that each link will be a /64

• For point to point links you will most likely not want to use
the EUI64 coded interface identifier for operational reasons

• And as there is no broadcast address in IPv6, /127 seems
as the natural subnet size choice for p2p links

• However, this will (at least in theory) create a number of
conflicts with other IETF standards...

• Let’s look at some of them...

Point to point link addressing
• Most basically, RFC3513 says the longest subnet prefix possible is /

64

• Then again who follows standards :-)

• Second, RFC3513 defines the 70th and 71th bits as the u and g bits
(universal/local)

• If /127 is used, these bits need to be taken into account when
the address is created

• Third, RFC3513 defines the subnet-router anycast address

• In a prefix of length n bits, the 128-n last bits are all zero. And all
routers on the subnet are listening on the anycast address

Point to point link addressing
• Now assume the following sequence of events (From RFC3627, /127 length

considered harmful) :

• Router A and router B are connected by a point-to-point link

• Neither is configured

• Router A is configured with 2001:DB8::1/127

• Router A performs DAD for 2001:DB8::1/127, and adds the subnet-router
anycast address, 2001:DB8::0/127. DAD is not performed for anycast addresses

• Router B is now configured with 2001:DB8::0/127 as it’s unicast address and
performs DAD, which fails

• Router B will not get an address

• Will be repeated at crash or reboot

Point to point link
addressing

• Possible solutions

• Use /64 for point to point links

• Only use link-local addresses. Not operationally viable

• Use /126. Does not have the anycast problem, but does have the
u/g problem

• Modify RFC3513. Not likely as /64 is deployed and standardised

• RFC3627 recommends /112 to leave room for node identifiers

• There are some additional problems with Mobile IP in the use of
prefixes longer than /120

• The last 7 bits all zero have been reserved as “Mobile IPv6
Home-agents anycast address”

RFC3849 - The
Documentation prefix

• To avoid the “SUN experience” the prefix
2001:DB8::/32 is reserved for use in
documentation

• Should never be configured....

• Should never be announced....

71

Address allocation policies

IP address allocation flow
IANA

RIPE ARIN APNIC LACNIC AFNIC

LIR

End-user

LIR NIR

End-user LIR End-user

End-user

73

Address Allocation Policy

• According to the IPv6 architecture a “site’” will
be give a /48 as prefix

• Each site shall in turn under RFC3513 allocate
a /64 per link

• RIRs allocates a /32 as the first allocation to an
LIR

• Larger allocations can be made with reference
to the HD ration with their current customers

74

Today’s Address Allocation
Policy

• For the first allocation the following requirements
needs to be met

• LIR

• Have plans for 200 allocations to other organizations within
two years

• In principle only ISPs and large enterprises meet the
criteria

• For example NorduNET doesn’t

75

Today's Address Allocation
Policy

• Means there are

• No PI address space, i.e portable address space

• No other way to end-users/sites to get addresses
except via their provider

• The need for redundancy is not less in IPv6
compared to IPv4

76

Transition technologies

77

Transition technologies
• When introducing IPv6 into a network, a number of issues

might occur

• All hardware in the network might not support IPv6

• The Internet provider might not offer/support IPv6

• The network is behind a firewall (NAT device) that
does not support IPv6

• All applications does not support IPv6

• What problems you might encounter is very much
dependent on what type of network it is

78

Transition technologies
• The IETF’s v6ops working group decided to define a number of scenarios

• Enterprise

• ISP

• Applications

• 3GPP

• (Campus)

• Each scenario specifies

• Problems

• Requirements on the solutions to the problems

• The thought was that based on this a decision could be made between the
various transition technologies that where proposed

• This has turned out much harder to do than anticipated

79

End-user 1

80

End-user 2

81

The “lucky” end-user

82

Dual-stack

83

Dual-stack - IOS
interface FastEthernet0

 ip address 195.43.225.65 255.255.255.224

 ip pim sparse-mode

 speed 10

 half-duplex

 ipv6 enable

 ipv6 address 2001:670:87:1::/64

 ipv6 nd prefix-advertisement 2001:670:87:1::/64 300 300
autoconfig

 no cdp enable

Dual -stack FreeBSD
xl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

 options=b<RXCSUM,TXCSUM,VLAN_MTU>

 inet 194.15.141.69 netmask 0xffffffe0 broadcast 194.15.141.95

 inet6 fe80::226:54ff:fe08:9e4c%xl0 prefixlen 64 scopeid 0x1

 inet6 2001:670:87:1:226:54ff:fe08:9e4c prefixlen 64 autoconf

 ether 00:26:54:08:9e:4c

 media: Ethernet autoselect (100baseTX <full-duplex>)

 status: active

85

Tunnels
• Tunnels can be static

• E.g. permanently configured

• Dynamic

• ”Dial-on-demand”

• The tunnels are established when they are needed

• Tunnels can be between

• Host-Host

• Host-Router

• Router-Router

86

Tunnels

IPv6 IPv4 IPv6

IPv6

IPv6

Tunnel encapsulation

IPv6 Header
Transport

header
DataIPv4 Header

88

Tunnels example - Router-
to-Router

ipv6 unicast-routing

!

interface Tunnel10

 description TO Kurtis

 no ip address

 ipv6 enable

 ipv6 address 2001:670:87:3001::2/126

 tunnel source 193.94.250.58

 tunnel destination 195.43.225.65

 tunnel mode ipv6ip

 tunnel checksum

!

ipv6 route 2001:670:87::/48 Tunnel10

Router A Router B
ipv6 unicast-routing

!

interface Tunnel10

 description TO KQ FI

 no ip address

 ipv6 enable

 ipv6 address 2001:670:87:3001::1/126

 tunnel source 195.43.225.65

 tunnel destination 193.94.250.58

 tunnel mode ipv6ip

 tunnel checksum

ipv6 route ::/0 Tunnel

89

Tunnels example - Router-
to-host

• The router side looks the same…

• Host (FreeBSD) :
$ ifconfig gif0 inet 194.112.11.163 195.43.225.65

$ ifconfig gif0 inet6 2001:670:87:3001::6 prefixlen 12

$ route add -inet6 2001:670:87:3001::4 -prefixlen 126 -interface gif0

$ route add -inet6 default 2001:670:87:3001::5

90

Tunnels example - Router-
to-Host

$ ifconfig gif0

gif0: flags=8010<POINTOPOINT,MULTICAST> mtu 1280

 inet 194.112.11.163 --> 195.43.225.65 netmask
0xffffff00

 inet6 2001:670:87:3001::6 --> :: prefixlen 12

91

6to4

001TLAIPv4 Address SLA Interface ID
3 13 32 16 64

• In 6to4 an IPv4 gateway address is embedded
in the IPv6 address

• The IPv6 prefix for these addresses is 2002::/16

92

6to4• 6to4

• Base specification in RFC3056

• Anycast prefix for the gateway described in RFC3068

• The idea behind 6to4 is to use it as a IPv6 addressing and transport mechanism for hosts
(networks) with at least one global unicast IPv4 address

• Temporary methods while IPv4 and IPv6 co-exists

• Also works if the gateway is a NAT device

• But not if the gateway is behind a NAT device

• The 6to4 prefix is the prefix that is formed by the use of 6to4 transport and used within the
6to4 site

• Relay router

• The router that bridges between 6to4 and native IPv6

• Packets are sent as type IPv41

• For anycast 192.88.99.1/24 is announced as relay

93

6to4

IPv6 IPv4 IPv6

2002:192.168.1.1.0:1:2:3

S-IP: 2002:192.168.1.1.0:1:2:3
D-IP: 2002:10.0.0.1:0:1:2:3

192.168.1.1 10.0.0.1

S-IP: 192.168.1.1
D-IP: 10.0.0.1

S-IP: 2002:192.168.1.1:0:1:2:3
D-IP: 2002:10.0.0.1:0:1:2:3

S-IP: 2002:192.168.1.1:0:1:2:3
D-IP: 2002:10.0.0.1:0:1:2:3

2002:10:0:0:1:0:1:2:3

6to4 - Cisco IOS example

Thanks to Philip Smith@Cisco for the
example

interface Loopback0

 ip address 192.168.30.1 255.255.255.0

 ipv6 address 2002:c0a8:1e01:1::/64 eui-64

!

interface Tunnel0

 no ip address

 ipv6 unnumbered Ethernet0

 tunnel source Loopback0

 tunnel mode ipv6ip 6to4

!

ipv6 route 2002::/16 Tunnel0

6to4 - FreeBSD example
In /etc/rc.conf

Local IPv4 address for 6to4 tunneling interface.

its IPv6 address will be "2002:c0a0:0001::1"

stf_interface_ipv4addr="192.168.0.1"

RFC3068 suggests anycast IPv4 address 192.88.99.1

for 6to4 routers, but you can use other IPv4 address

according to the site-adminitrator configuration.

ipv6_defaultrouter="2002:c058:6301::"

6to4 Relay - Cisco IOS
example

Thanks to Philip Smith@Cisco for the
example

interface Loopback0
 ip address 192.168.99.1 255.255.255.0
 ipv6 address 2002:c0a8:6301:1::/64 eui-64
!
interface Tunnel0
 no ip address
 ipv6 unnumbered Ethernet0
 tunnel source Loopback0
 tunnel mode ipv6ip 6to4
!
ipv6 route 2002::/16 Tunnel0
ipv6 route ::/0 2002:c0a8:1e01::1

97

Teredo
• Many transition technologies are based on tunnelling Ipv6 packets in

IPv4

• This is a problem with NAT devices (or any middle box) as they often want to do
(stateful) packet inspection

• For example 6to4 is IPv6 packets encapsulated in IPv4 with IP version
number 41

• Not supported by several types of NAT

• Or requires manual configuration

• Teredo solves this by encapsulating IPv6 packets in a IPv4 UDP packet

• That is both a IPv4 header and a UDP header

• TCP and UDP is always supported by NAT

98

Teredo
• NAT comes in three types

• Cone NAT

• The NAT box maintains a translation table that contains a mapping between
a source address and source port to a external address and port.

• When installed in the translation table, traffic from any global address t the
external address will be translated

• Restricted NAT

• Only accept translation for know source addresses and ports

• Symmetrical NAT

• Only maps internal addresses and ports to specific external addresses and
ports

99

Teredo
• Terdo client

• The client behind the NAT device that can not obtain a IPv6 address “naturally

• Does not have a globally reachable IPv4 address

• Configures a Teredo interface with a Teredo address obtained by a Teredo server

• Teredo Server

• A server that has both global IPv4 and IPv6 addresses

• Works as a “helper” when configuring a Teredo client

• Assists in the communication between two Teredo clients

• Listens to UDP port 3544

• Teredo Relay

• IPv6 router that can pass packets between Teredo clients and native IPv6 nodes

• Listens to UDP port 3544

• IPv6 nod

• A node that has a “real” global IPv6 address

100

Teredo address format

Prefix

• 32-bit Teredo prefix

• 2001::/32

• Server IPv4

• IPv4 address for a Teredo server

Flags

• 16 bit documenting the type of address and NAT

Port
• UDP port for client side Teredo service (that is the source port when reaching the Teredo

server)

• Coded by reversing bits

IPv4 address of the Teredo client NAT box

• That is the external address of the NAT device

• Coded by reversing the bits

101

Teredo
• Start sequence

• Decide the type of NAT (Cone, restricted Cone,
symmetrical)

• If it is symmetrical NAT, Teredo fails

• If not symmetrical NAT the set-up succeeds and
the Teredo client configures a Teredo address

• When the connection is established, the Teredo client
will send a number of “bubbles”

• These are empty IPv6 packets that are used to
create a mapping (state) in the NAT device

102

Teredo

• Windows XP SP2 and Windows XP Advance
Networking pack will try and find a Teredo
server by resolving
teredo.ipv6.microsoft.com.

• This cna be changed with

 netsh interface ipv6 set teredo servername=

103

Teredo

104

Teredo
• Communication between two routers on the

same link

• Client A sends a bubble packet to a not yet
decided Teredo IPv4 Discovery address. The
destination in the IPv6 header is Client B’s Teredo
address

• Cleint B will answer to A’s IPv4 unicast address
and its Teredo port

• Traffic will flow directly

105

Teredo
Cone NAT

As mapping exists in the NAT device, the clients can communicate directly

106

Teredo
Restricted NAT

107

Teredo
• Client A sends a bubble packet to client B

• B’s NAT will discard the packet but A’s NAT
has created a mapping

• Client A will send a new bubble packet to the
Teredo server, that will then forward the
packet to client B

• Client B will answer the packet, and thereby
creating a mapping in its NAT and will be let
through A’s NAT

• As A’s NAT already have the mapping

108

Teredo
Between a IPv6 node and a

Teredo

client behind a Cone NAT

109

Teredo
• Teredo client starts with finding a close

Teredo relay by sending a ICMPv6 Echo
request packet through its Teredo server

• The IPv6 node will answer with a ICMPv6
Echo Reply. By the IPv6 routing infrastructure
it will choose the closest Teredo gateway

• The Teredo relay will encapsulate the packet
and as it is a Cone NAT it it will be able to
send it directly

• The Teredo client will get the IPv4 address of
the Teredo relay

110

Teredo
• For restricted NAT we do the same thing, but

we can not send the packets directly

• The Teredo relay sends a bubble packet through
the Teredo server

• The Teredo client replies with a bubble packet to
the Teredo relay

• Traffic will then start to flow

• Works the same way when a IPv6 node
initiates the traffic

Translation mechanisms
• In addition there are a set of transition technoliges based on translating

between IPv4 and IPv6

• Translation

• NAT-PT (RFC 2766 & RFC 3152)

• TCP-UDP Relay (RFC 3142)

• DSTM (Dual Stack TransitionMechanism)

• API

• BIS (Bump-In-the-Stack) (RFC 2767)

• BIA (Bump-In-the-API)

• ALG

• SOCKS-based Gateway (RFC 3089)

• NAT-PT (RFC 2766 & RFC 3152)

IPv6 and MPLS

Scenarios

• Many operators already have MPLS in their
networks for other reasons (services). This
can be used for IPv6 migration by

• IPv6 over tunnels

• IPv6 over circuit MPLS

• Native IPv6 MPLS (LDP & IGP over IPv6)

• IPv6 Provider Edge Router (6PE) over MPLS

IPv6 over tunnels

PE

PE

P

P

P

P

PE

PE

IPv4

Tunnels

IPv6 over Circuit MPLS

PE

PE

P

P

P

P

PE

PE

IPv4

Circuit

Native MPLS + IPv6

• Requires upgrading of infrastructure

• Control plane with IPv6

• IGP/EGP

• LDP over IPv6

6PE

6PE

6PE

P

P

P

P

6PE

6PE

IPv4

IPv4/IPv6 dual-stack

MP-iBGP

6PE

• IPv4 core with MPLS as “usual”

• PE routers upgraded to dual-stack

• iBGP uses MP-BGP to distribute reachability
between 6PE routers

• 6PE transports IPv6 packets to other 6PE in
MPLS

What do I need to do
to get started?

Checklist to get started
1. Apply for addresses from APNIC or your ISP

2. Make an address plan

3. Make an inventory of internal systems and the use
of IPv4 addresses in interal system

4. In the case you have internal / internally developed
systems that are dependent on IPv4 - create a
porting plan

5. Make a migration calendar

6. Start to migrate!

Apply for IPv6 address
space - LIR

• Fill in the request form!

• If you do not have an allocation

• Take this opportunity to go and talk to your
friendly hostmasters!

Applying for IPv6 address space
from your ISP

• Depends on which ISP you use

• Most ISPs will give out /48s to end-users

• But also /56 are becoming common

• Start with assessing your minimum needs

• Assume a /64 per broadcast domain

• I.e per each Ethernet/VLAN/etc

• The assessment shall meet your needs for the coming two years

• Contact the ISPs customer service to find out what their policy is and
how you order

Make an addressing plan
• In the beginning you where supposed to run EUI64 addresses

everywhere

• And router advertisement to announce it

• First of all, try and use the same binary-chop method as the
RIR/LIRs do

• But you can adjust it to your own needs

• Always allocate /64s to services

• That is so you can later migrate them to their own LANs
if you have to

• Do not you use EUI64 address for services

• Allocate static address for services

Make an inventory of the
systems

• List workstations

• Servers and services addresses

• Analyse DNS and DHCP servers

• Verify which clients will try and use IPv6 as transport

• Can the associated servers reply over IPv6
transport?

• Are IPv4 used in referrals?

To keep in mind...

• Start with configuring IPv6 addresses on infrastructure
such as routers, switches etc

• Continue to activate IPv6 on services

• Configure IPv6 on clients

• Update DNS

• The last can be hard to decide in which order to do

• Will depend on how client/serves will handle IPv6

Configuration examples
-

networking equipment

Thanks to Ron Bonica@Juniper and Philip Smith@Cisco
for some of the examples!

Configuration - Cisco IOS
• IPv6 is supported in all modern IOS releases

• If you don’t have IPv6 support you will have other
problems :-)

• Licenses can be a problem though

• Activating IPv6 (Global command)

• router# ipv6 unicast-routing

• To enable IPv6 CEF

• router# ipv6 cef

Configuration - Cisco IOS-XR/IOS
• IPv6 on Cisco XOS

• Enabled by default

• Interface commands (For IOS and XOS)

• To activate IPv6 on an interface

• router(config)# ipv6 enable

• To configure a static IP address

• router(config)# ipv6 address 2001:db8:1::/64

• To configure the interface with an EUI64 address

• router(config)# ipv6 address 2001:db8:1::/64 eui-64

Configuration - JunOS

• IPv6 enabled by default

• Interface configuration

 interfaces {
 fe-3/0/0 {

 unit 0 {
 family inet6 {
 address 2001:db8:1::45c/64;
 }
 }
 }
 }

Configuration - JunOS

• Dual-stack interface configuration

interfaces {
 fe-3/0/0 {
 unit 0 {
 family inet {
 address 10.1.1.1/24;
 }
 family inet6 {
 address 2001:db8:1::45c/64;
 }
 }
 }
}

Configuration - JunOS

• EUI64 interface address configuration

interfaces {

 fe-3/0/0 {

 unit 0 {

 family inet6 {

 address 2001:db8:1::45c/64 eui-64;

 }

 }

 }

}

Interface status - IOS

• Link-locals

Router1# conf t
Router1(config)# ipv6 unicast-routing
Router1(config)# ^Z
Router1#sh ipv6 interface
Ethernet0/0 is up, line protocol is up
 IPv6 is enabled, link-local address is
FE80::A8BB:CCFF:FE00:1E00
 No global unicast address is configured
 Joined group address(es):
 FF02::1
 FF02::2
 FF02::1:FF00:1E00
 MTU is 1500 bytes
 ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled

Interface status - IOS

• Interface status (EUI64 configured)

Router1#sh ipv6 interface eth0/0
Ethernet0/0 is up, line protocol is up
 IPv6 is enabled, link-local address is FE80::A8BB:CCFF:FE00:1E00
 Global unicast address(es):
 2001:DB8::A8BB:CCFF:FE00:1E00, subnet is 2001:DB8::/64 [EUI]
 Joined group address(es):
 FF02::1
 FF02::2
 FF02::1:FF00:1E00
 MTU is 1500 bytes
 ICMP error messages limited to one every 100 milliseconds
 ICMP redirects are enabled
 ND DAD is enabled, number of DAD attempts: 1
 ND reachable time is 30000 milliseconds
 ND advertised reachable time is 0 milliseconds
 ND advertised retransmit interval is 0 milliseconds
 ND router advertisements are sent every 200 seconds
 ND router advertisements live for 1800 seconds
 Hosts use stateless autoconfig for addresses.

Interface status - IOS-XR

RP/0/0/CPU0:as4byte#sh ipv6 interface gig 0/2/0/1
GigabitEthernet0/2/0/1 is Up, line protocol is Up, Vrfid is
0x60000000
 IPv6 is enabled, link-local address is fe80::204:6dff:fea2:90fd
 Global unicast address(es):
 2001:db8::204:6dff:fea2:90fd, subnet is 2001:db8::/64
 Joined group address(es): ff02::6 ff02::5 ff02::2
 ff02::1
 MTU is 1514 (1500 is available to IPv6)
 ICMP redirects are disabled
 ICMP unreachables are enabled
 ND DAD is enabled, number of DAD attempts 1
 ND reachable time is 0 milliseconds
 ND advertised retransmit interval is 0 milliseconds
 Hosts use stateless autoconfig for addresses.
 Outgoing access list is not set
 Inbound access list is not set

Interface status - JunOS
regress@UI-J6300-2> show interfaces fe-3/0/0
 Logical interface fe-3/0/0.0 (Index 68) (SNMP ifIndex 42)
 . . .
 Flags: SNMP-Traps Encapsulation: ENET2
 Input packets : 70
 Output packets: 79
 Protocol inet, MTU: 1500
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 1.1.1/24, Local: 1.1.1.2, Broadcast: 1.1.1.255
 Protocol inet6, MTU: 1500
 Flags: Is-Primary
 Addresses, Flags: Is-Preferred
 Destination: fe80::/64, Local: fe80::205:85ff:fec7:683c
 Addresses, Flags: Is-Default Is-Preferred Is-Primary
 Destination: 2001:db8:2:1::/64, Local: 2001:db8:2:1::2

Configuration examples
-

Operating systems

FreeBSD

 ipv6_enable=YES # Set to YES to set up for IPv6.
 ipv6_ifconfig_bge0="2001:db8:1::39/64" # Sample manual assign entry
 ipv6_ifconfig_bge0_alias0="2001:db8:1::40/64"
 ipv6_defaultrouter="2001:db8:1::1" # Use this for 6to4 (RFC 3068)
 ipv6_ipv4mapping=NO # Set to NO to disable IPv4 mapped IPv6 addr

• Reboot and it should work!

• FreeBSD6.3-REL and FreeBSD-7.0-CURRENT all
supports IPv6 per default

• In /etc/r.conf you only need to add

OS X

OS X

OS X

OS X

OS X

Windows Vista

Windows Vista

Windows Vista

Windows Vista

Configuration examples
-

Applications

Bind9
• IPv6 is supported from Bind8

• You should anyway be running Bind9.4.2

• In most distributions IPv6 is compiled in by default

• If not, you do

• ./configure --enable-ipv6 --with-openssl

• Then all you need in your named.conf is

• listen-on-v6 { any; };

• Your named is now ready to reply to IPv6 queries

• Remains is to build zone files....

Postfix

• In main.cf

IPv6 configuration

#

inet_protocols = all

smtp_bind_address6 = 2001:670:87:2:20e:a6ff:fe3c:6a8b

Courier IMAP

• In imapd

DEFAULT SETTING from /usr/local/etc/courier-imap/imapd.dist:

#

#ADDRESS=0

#

ADDRESS=0

Apache2

• In httpd.conf

Listen * 80

• or

Listen [2001:670:87:1:226:54ff:fe08:9e4c]:80

152

IPv6 Neighbour discovery

153

IPv6 Neighbour Discovery

• Described in RFC4861

• Used for

• Finding link-layer addresses of nodes on the same
link

• Delete state that is no longer in valid

• Find routers that are willing to forward packets

• Used to verify reachability on a link

154

IPv6 Neighbour Discovery
• Router Advertisement

• Routers announce themselves to a multicast group (if the link layer supports it)

• Nodes then listen to multicast announcements

• Includes information on how nodes are expected to obtain an address

• Neighbour solicitation

• Nodes ask others to send their link-layer address

• Sent to a multicast group

• Also used for Duplicate Address Detection, DAD

• IPv6 ND corresponds to IPv4

• ARP

• ICMP redirect

• ICMP router discovery

155

IPv6 Neighbour Discovery

• Router solicitation

• Sent by nodes to the routers to force more frequent Router
Advertisement

• Optimistic DAD

• A node can end up having to wait for quite a while until DAD
completes

• The likelihood of a MAC address collision is low

• Optimistic DAD makes the assumption that you do not have to
wait for DAD to complete before you can start sending traffic

• If it afterwards turns out there was a collision, lets handle
that then

156

IPv6 Stateless address
autoconfiguration

157

Stateless address
autoconfiguration

• RFC4862

• For autoconfiguration of IPv6 there are two options

• Stateful (DHCPv6)

• Stateless (via RA)

• For stateless autoconfiguration, this is done by combining the
address prefix advertised in the RA with the Interface I-D

• EUI64 or RFC4941

• Thought to help renumbering of a network

• Problem

• How do I find a DNS server?

• How do I send update to the DNS server?

158

Routing and network
design

159

IPv6 Anycast addresses
• An anycast address is an address that is in use in

various different hosts

• Through the routing system, the “network” will
choose the closest announcement of the anycast
address (host/interface)

• For IPv6 the same thing applies

• But the anycast address can also be used for a link

• The problem then is that DAD needs to
understand it

• Technology/Draft/Usefulness is under discussion

160

IPv6 Anycast address
Subnetprefix

n bits
121-n bits

Anycast id
7 bits

• The subnet prefix is the same as for the rest of the subnet

• In the example above, the leftmost 121 bits are said to be a toplogy region
identified by prefix p

• Within the topology p the anycast address must be maintained as a separate routing entity

• Outside p it might be aggregated

• Any anycast address might not be used as the source address of an IPv6
packet

• An anycast address must not be assigned to an IPv6 host

IPv6 Anycast
• Required anycast address

• The subnet-router anycast address is predefined

• Subnet prefix identifies a given link

• The anycast address is syntactically the same as an unicast
address, with the interface bits set to 0

• All routers are required to support the subnet-router addres

• Packets will be delivered to one router on the link

Subnet prefix
n bits

128-n bits
00000000000000

• An IPv6 multicast address identifies a group
of interfaces

• An interface may belong to any number of
groups

• The multicast address format is

• Where flgs are

IPv6 multicast

8 bits
11111111

4
bits
flgs

4
bits

scop

112 bits
Group id

000T

IPv6 multicast

• Flags are defined as
• T=0 IANA assgined, well-known, multicast address

• T=1 is a non-permanent (transient) multicast address

• Scope is used to limit the scope of a particular multicast group
• 0 reserved

– 1 interface-local scope

– 2 link-local scope

– 3 reserved

– 4 admin-local scope

– 5 site-local scope

– 6 (unassigned)

– 7 (unassigned)

– 8 organization-local scope

– 9-D (unassigned)

– E global scope

– F reserved

IPv6 multicast
• interface-local is only valid on a single interface and is only useful for

loopback tests of multicast

• link-local and site-local have the same meaning as for unicast
address space

• admin-local has an administratively defined scope, and is the smallest
non-topolgical scope

• organisation-local is intended to span multiple sites belonging to a
single organisation

• IANA assigned, well-known, multicast addresses have the same
meaning independent of scope

• IPv6 packet must not have a multicast address as a source address

• Pre-defined multicast addresses
• Reserved Multicast Addresses: FF00:0:0:0:0:0:0:0

 FF01:0:0:0:0:0:0:0
 FF02:0:0:0:0:0:0:0

 FF03:0:0:0:0:0:0:0
 FF04:0:0:0:0:0:0:0
 FF05:0:0:0:0:0:0:0
 FF06:0:0:0:0:0:0:0
 FF07:0:0:0:0:0:0:0

– All nodes addresses : FF01:0:0:0:0:0:0:1
 FF02:0:0:0:0:0:0:1

– All routers addresses : FF01:0:0:0:0:0:0:2
 FF02:0:0:0:0:0:0:2
 FF05:0:0:0:0:0:0:2

– Solicited-node address : FF02:0:0:0:0:1:FFXX:XXXX
– XX:XXXX are the low order 24 bits of an unicast interface address

IPv6 multicast

FF08:0:0:0:0:0:0:0
FF09:0:0:0:0:0:0:0
FF0A:0:0:0:0:0:0:0
FF0B:0:0:0:0:0:0:0
FF0C:0:0:0:0:0:0:0
FF0D:0:0:0:0:0:0:0
FF0E:0:0:0:0:0:0:0
FF0F:0:0:0:0:0:0:0

Static routing

Static routing

• Cisco IOS syntax

• ipv6 route ipv6-prefix/
prefix-length {ipv6- address |
interface-type interface-number} [admin-
distance]

ipv6 route 2001:db8:0::/48 2001:db8:FFEE::1

ipv6 route 2001:db8:0::/64 Serial0/0

Static routing

• Cisco IOS-XR syntax

router static
 address-family ipv6 unicast

 ipv6-prefix/prefix-length {ipv6-address |
 interface-type interface-number} [admin-
 distance]

• Example

 router static
 address-family ipv6 unicast
 2001:db8::/64 2001:db8:0:CC00::1 110

Static routing
• JunOS syntax

[edit routing-options rib inet6.0]
 static {
 defaults {
 static-options;
 }
 rib-group group-name;
 route destination-prefix {
 next-hop;
 qualified-next-hop address {
 metric metric;
 preference preference;
 }
 static-options;
 }
 }

Static routing

• Example

[edit routing-options]
 rib inet6.0 {
 static {
 route 2001:db8::/64 {
 next-hop 2001:db8:0:cc00::1;
 metric 110;
 }
 }
 }

171

OSPF

172

OSPF• Defined in RFC2740

• Called OSPFv3

• Based on OSPFv2 with many similarities

• Runs over IPv6

• Flooding, Designated router election, SPF, etc

• Unchanged

• OSPFv3 will work per link instead of per subnet

• New LSAs for IPv6

• No longer support for authentication

• Instead makes use of IPv6 built in encryption and authentication

Router-ids

• Keep in mind that the router-id is a 32 bit
value

• If you are deploying dual-stack, which is most
likely, you will not have an issue

• Otherwise you will have to assign router-ids

OSPF new LSA types
• Link LSA

• A link LSA per link

• Link local scope flooding on the link with which they are associated

• Provide router link local address

• List all IPv6 prefixes attached to the link

• Assert a collection of option bit for the Router-LSA

• Inter-Area prefix LSA

• Describes the destination outside the area but still in the AS

• Summary is created for one area, which is flooded out in all other areas

• Originated by an ABR

• Only intra-area routes are advertised into the backbone

• Link State ID simply serves to distinguish inter-area-prefix-LSAsoriginated by the same
router

• Link-local addresses must never be advertised in inter-area-prefix-LSAs

OSPF commands in IOS

Thanks to Philip Smith@Cisco for the command summary

• Entering router mode

• [no] ipv6 router ospf <process ID>

• Enteringinterfacemode

• [no] ipv6 ospf<process ID> area <areaID>

• Exec mode

• [no] show ipv6 ospf[<process ID>]

• clear ipv6 ospf[<process ID>]

• Configuring area range

• [no] area <areaID> range <prefix>/<prefix length>

• Showing new LSA

• show ipv6 ospf[<process ID>] database link

• show ipv6 ospf[<process ID>] database prefix

176

OSPFv3 IOS
interface GigabitEthernet2/1
 description Local LAN

 ip address 10.0.0.1 255.255.255.0
 no ip directed-broadcast
 no ip proxy-arp

 duplex auto
 flowcontrol auto

 ipv6 address 2001:698:9:22::/64 eui-64
 ipv6 enable
 ipv6 ospf 8674 area 0

!
ipv6 router ospf 8674

 log-adjacency-changes
!
! The following are hosting interfaces.

 passive-interface GigabitEthernet2/2
 passive-interface GigabitEthernet2/2.10

 passive-interface GigabitEthernet2/2.20
 passive-interface GigabitEthernet2/2.30

OSPFv3 IOS-XR

interface POS1/1
 ipv6 address 2001:db8:FFFF:1::1/64
!
interface POS2/0
 ipv6 address 2001:db8:1:1::2/64
!
router ospfv3 ISP-BB
 address-family ipv6 unicast
 area 0
 interface POS1/1
 area 1
 interface POS2/0

OPSFv3 JunOS
interfaces {
 fe-3/0/0 {
 unit 0 {
 family inet6 {
 address 2001:db8:1:1::1/64;
 }
 }
 }
}
routing-options {
 router-id 10.1.1.104;
}
protocols {
 ospf3 {
 area 0.0.0.1 {
 interface fe-3/0/0.0 {
 metric 100;
 }
 }
 }
}

179

IS-IS

180

IS-IS

• RFC5308

• Two new TLVs defined

• Reachability

• Interface address

• Important to remember that IS-IS does not
use IP for communication

• If routers can form adjacencies they will!

ISIS - IOS
!
interface Ethernet1
 ip address 10.1.1.1 255.255.255.0
 ipv6 address 2001:0001::45c/64
 ip router isis
 ipv6 router isis
!
router isis
 address-familiy ipv6
 redistribute static
 exit-address-familiy
 net 42.0001.0000.0000.072c.00
 redistribute static

ISIS - IOS XR

interface Ethernet 1
 ip address 10.1.1.1 255.255.255.0
 ipv6 address 2001:db8:1::1/64
!
interface Ethernet 2
 ip address 10.2.1.1 255.255.255.0
 ipv6 address 2001:db8:2::1/64
!
router isis ISP-BB
 net 42.0001.0000.0000.072c.00
 address-family ipv4 unicast
 redistribute static
 address-family ipv6 unicast
 redistribute static
 single-topology
 interface Ethernet 1
 address-family ipv4 unicast
 interface Ethernet 2
 address family ipv6 unicast

ISIS - JunOS
interfaces {
 fe-3/0/0 {
 unit 0 {
 family inet {
 address 10.1.1.1/24;
 }
 family iso;
 family inet6 {
 address
2001:db8:1::1/64;
 }
 }
 }

(Continued -->)

fe-1/0/0 {
 unit 0 {
 family inet {
 address 10.2.1.1/24;
 }
 family iso;
 family inet6 {
 address 2001:db8:2::1/64;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 10.1.1.103/32;
 }
 family inet6;
(Continued…)

ISIS- JunOS
family iso {
 address 42.0001.0000.0000.072c.00;
 }
 }
 }
}
protocols {
 isis {
 export redistribute-static;
 interface fe-1/0/0.0;
 interface fe-3/0/0.0;
 interface lo0.0;
 }
}
policy-options {
 policy-statement redistribute-static
{
 term 1 {
 from protocol static;
 then accept;
 }
 }
}

185

BGP

186

BGP and IPv6

• BGP it self will behave exactly as for IPv4

• IPv6 will make use of multiprotocol support

• RFC2545 - Use of BGP-4 Multiprotocol Extensions for
IPv6 Inter-Domain Routing

• NEXT_HOP and NLRI are expressed as IPv6
addresses and prefix

• RFC2545

• Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-
Domain Routing

BGP and IPv6
• BGP uses it’s own routing table

• So no information shared between IPv4 and IPv6

• However, BGP uses TCP for transport

• So the exchange of information can be done over
either of IPv4 and IPv6 transport

• Only share peering sessions if the topology is the
same

• Same router-id concerns as before

188

eBGP configuration - IOS
router bgp 3220

 no synchronization

 bgp log-neighbor-changes

 neighbor ipv6-peer peer-group

 neighbor ipv6-peer advertisement-interval 0

 neighbor ipv6-peer soft-reconfiguration inbound

 neighbor 2001:670:87:3001:: remote-as 790

 no neighbor 2001:670:87:3001:: activate

 neighbor 2001:670:87:3001::A remote-as 1257

 no neighbor 2001:670:87:3001::A activate

 neighbor 2001:670:87:3001::12 remote-as 1654

 no neighbor 2001:670:87:3001::12 activate

 no auto-summary

 !

189

eBGP configuration - IOS
address-family ipv6

 neighbor ipv6-peer activate

 neighbor ipv6-peer route-map v6-peer-out out

 neighbor 2001:670:87:3001:: peer-group ipv6-peer

 neighbor 2001:670:87:3001::A peer-group ipv6-peer

 neighbor 2001:670:87:3001::12 peer-group ipv6-peer

 network 2001:670:87::/48

 exit-address-family

!

ipv6 route ::/0 Tunnel10

!

ipv6 prefix-list ipv6-prefix seq 5 permit 2001:670:87::/48

route-map v6-peer-out permit 10

 match ipv6 address prefix-list ipv6-prefix

!

190

iBGP configuration - IOS

router bgp 1

 neighbor ibgp-peer peer-group

 neighbor ibgp-peer version 4

 neighbor ibgp-peer remote-as 1

 neighbor ibgp-peer update-source Loopback10

 neighbor ibgp-peer send-community

 neighbor ibgp-peer prefix-filter announce out

 neighbor ibgp-peer soft-reconfiguration inbound

!

 neighbor 2001:db8::1 peer-group ibgp-peer

 neighbor 2001:db8::1 prefix-list kurtis in

191

Prefix-lists - IOS
router bgp 1
 neighbour 2001:db8:1::1 remote-as 2
 neighbour 2001:db8:1::1 prefix-list infilter in
 neighbour 2001:db8:1::1 prefix-list outfilter out
 neighbour 2001:db8:1::1 remote-as 3
 neighbour 2001:db8:1::1 prefix-list infilter in
 neighbour 2001:db8:1::1 prefix-list outfilter out
!
ipv6 prefix-list infilter deny 2001:db8:1::/48
ipv6 prefix-list infilter permit ::/0 le 32
ipv6 prefix-list outfilter permit 2001:db8:2::/48

BGP - Cisco IOS-XR

router bgp 1
 bgp router-id 10.1.1.4
 !
 address-family ipv6 unicast
 network 2001:db8:2::/48
 !
 neighbor 2001:db8:0:2::2
 remote-as 2
 route-policy all-v6-in in
 route-policy my-v6-out out
!
! all-v6-in <snipped>
route-policy my-v6-out
 if destination in my-v6 then pass
 endif
end-policy
!
prefix-set my-v6
 2001:db8:2::/48
end-set
!

BGP configuration -
JunOS

interfaces {
 fe-3/0/0 {
 unit 0 {
 family inet6 {
 address 2001:db8:0:2::1/64;
 }
 }
 }
}
routing-options {
 rib inet6.0 {
 static {
 route 2001:db8:2::/48 discard;
 }
 }
 router-id 10.1.1.103;
}
(Continued -->)

protocols {
 bgp {
 local-as 1;
 group as2 {
 export export-static;
 peer-as 2;
 neighbor
2001:db8:0:2::2;
 }
 }
}
policy-options {
 policy-statement export-static {
 term 1 {
 from protocol static;
 then accept;
 }
 }
}

BGP - IOS IPv4 and IPv6
router bgp 10
 no bgp default ipv4-unicast
 neighbor 2001:db8:1:1019::1 remote-as 20
 neighbor 172.16.1.2 remote-as 30
!
 address-family ipv4
 neighbor 172.16.1.2 activate
 neighbor 172.16.1.2 prefix-list ipv4-ebgp in
 neighbor 172.16.1.2 prefix-list v4out out
 network 172.16.0.0
 exit-address-family
!
 address-family ipv6
 neighbor 2001:db8:1:1019::1 activate
 neighbor 2001:db8:1:1019::1 prefix-list ipv6-ebgp in
 neighbor 2001:db8:1:1019::1 prefix-list v6out out
 network 2001:db8::/32
 exit-address-family
!
! Continued -->

BGP - IOS IPv4 and IPv6

ip prefix-list ipv4-ebgp permit 0.0.0.0/0 le 32
!
ip prefix-list v4out permit 172.16.0.0/16
!
ipv6 prefix-list ipv6-ebgp permit ::/0 le 128
!
ipv6 prefix-list v6out permit 2001:db8::/32!

BGP - IOS-XR IPv4 and IPV6
router bgp 10
 bgp router-id 10.1.1.4
 !
 address-family ipv4 unicast
 network 172.16.0.0
 !
 address-family ipv6 unicast
 network 2001:db8::/32
 !
 neighbor 2001:db8:1:1019::1
 remote-as 20
 address-family ipv6 unicast
 route-policy ipv6-ebgp in
 route-policy v6out out
 !
 neighbor 172.16.1.2
 remote-as 30
 address-family ipv4 unicast
 route-policy ipv4-ebgp in
 route-policy v4out out
! Continued -->

route-policy ipv6-ebgp
 if destination in full-v6
then
pass
 endif
end-policy
!
prefix-set full-v6
 ::/0 le 128
!
route-policy v6out
 if destination in v6out then
pass
 endif
end-policy
!
prefix-set v6out
 2001:db8::/32
end-set
! Continued -->

route-policy ipv4-ebgp
 if destination in full-v4 then
pass
 endif
end-policy
!
prefix-set full-v4
 0.0.0.0/0 le 32
end-set
!
route-policy v4out
 if destination in v4out then
pass
 endif
end-policy
!
prefix-set v4out
 172.16.0.0/16
end-set

BGP - IOS-XR IPv4 and IPV6

BGP - JunOS IPv4 and IPV6
interfaces {
 fe-3/0/0 {
 unit 0 {
 family inet {
 address 10.1.1.1/24;
 }
 family inet6 {
 address 2001:db8:1::45c/64;
 }
 }
 }
}
routing-options {
 rib inet6.0 {
 static {
 route 2001:db8::/32 discard;
 }
 }
 router-id 10.1.1.103;
}
protocols {

 bgp {
 local-as 10;
 group as20 {
 export export-static;
 peer-as 20;
 neighbor 10.1.1.2;
 }
 group as30 {
 export export-static;
 peer-as 30;
 neighbor 2001:db8:1:1019::1;
 }
 }
}
policy-options {
 policy-statement export-static {
 term 1 {
 from protocol static;
 then accept;
 }
 }
}

199

Thank you!

