anti IP spoofing technique

MATSUZAKI ‘maz’ Yoshinobu
<maz@iij.ad.jp>
ip spoofing

creation of IP packets with source addresses other than those assigned to that host
Malicious uses with IP spoofing

- impersonation
 - session hijack or reset
- hiding
 - flooding attack
- reflection
 - ip reflected attack
impersonation

Oh, my partner sent me a packet. I’ll process this.
Oops, many packets are coming. But, who is the real source?
Oops, a lot of replies without any request…
ip reflected attacks

• smurf attacks
 – icmp echo (ping)
 – ip spoofing (reflection)
 – directed-broadcast amplification

• dns amplification attacks
 – dns query
 – ip spoofing (reflection)
 – DNS amplification
amplification

1. multiple replies

Sender ➔

2. bigger reply

Sender ➔
directed-broadcast amplification

(Sender) -> icmp echo request -> (other machines)

(Sender) <- icmp echo replies
DNS amplification

Sender

ANY ?xxx.example.com

xxx.example.com IN TXT
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX

Copyright (C) 2006 Internet Initiative Japan Inc.
ip reflected attacks
smurf attack

Attacker

ip spoofed ping

victim

ICMP echo replies
dns amplification attack

Attacker

ip spoofed DNS queries

DNS replies

DNS

DNS

DNS

DNS

victim
relations – dns amp attack

Command&Control

IP spoofed DNS queries

stub-resolvers
full-resolvers

victim

botnet

root-servers
tld-servers
example-servers

Copyright (C) 2006 Internet Initiative Japan Inc.
solutions for ip reflected attacks

attacker -> ip spoofed packets -> open amplifier

prevent ip spoofing

disable open amplifiers

victim
two solutions

• disable ‘open amplifier’
 – disable ‘directed-broadcast’
 – disable ‘open recursive DNS server’
 • contents DNS server should accept queries from everyone, but service of resolver (cache) DNS server should be restricted to its customer only.

• prevent ip spoofing!!
 – source address validation
 – BCP38 & BCP84
Source Address Validation

• Check the source ip address of ip packets
 – filter invalid source ip address
 – filter close to the packets origin as possible
 – filter precisely as possible

• If no networks allow ip spoofing, we can eliminate these kinds of attacks
our assumption

- ISP/network administrator assign ip address for their users.
 - dynamic or static
 - DHCP, connectivity service
- Users should use these assigned ip address as their source ip address.
close to the origin

You are spoofing!

srcip: 0.0.0.0

Hmm, this looks ok...but..

srcip: 10.0.0.1

You are spoofing!

srcip: 10.0.0.1

You are spoofing!

srcip: 10.0.0.1

srcip: 0.0.0.0

You are spoofing!

srcip: 0.0.0.0

You are spoofing!

srcip: 0.0.0.0

10.0.0.0/23

10.0.3.0/24

10.0.0.0/24

Copyright (C) 2006 Internet Initiative Japan Inc.
how to configure the checking

• ACL
 – packet filter
 – permit valid-source, then drop any
• uRPF check
 – check incoming packets using ‘routing table’
 – look-up the return path for the source ip address
 – loose mode can’t stop ip reflected attacks
 • use strict mode or feasible mode
cisco ACL example

ISP Edge Router

ip access-list extended fromCUSTOMER
permit ip 192.168.0.0 0.0.255.255 any
permit ip 10.0.0.0 0.0.0.3 any
deny ip any any
!
interface Gigabitethernet0/0
ip access-group fromCUSTOMER in
!

point-to-point
10.0.0.0/30

customer network
192.168.0.0/24
juniper ACL example

ISP Edge Router

firewall family inet {
 filter fromCUSTOMER {
 term CUSTOMER {
 from source-address {
 192.168.0.0/16;
 10.0.0.0/30;
 }
 then accept;
 }
 term Default {
 then discard;
 }
 }
}

[edit interface ge-0/0/0 unit 0 family inet]
filter {
 input fromCUSTOMER;
}
cisco uRPF example

ISP Edge Router

uRPF

point-to-point
10.0.0.0/30

customer network
192.168.0.0/24

interface Gigabitethernet0/0
ip verify unicast source reachable-via rx
juniper uRPF example

ISP Edge Router

uRPF

[edit interface ge-0/0/0 unit 0 family inet]
rpf-check;

customer network
192.168.0.0/24

point-to-point
10.0.0.0/30
multistage verification

- customers know their network. 😊
- good for precise filter
- We can filter spoofed traffic at early stage.
uRPF - failures

• common failures
 – unused space
 – private space
 – wrong address

• asymmetric routing failures
 – multi-connected network
 – transit LAN

• special failures
 – private/non-routed backbone network
• if there is no filter, these packets keep looping until ttl expired....

• fix the routing!
• add null routes on the customer router
private space

- usual case 😞
- bad implementation of NAT
- mis-configuration
 - router/firewall
 - network
wrong IP address

- mobile PC trying their old IP
- mis-configuration – typo
- just spoofing

ISP Edge Router

uRPF

ip: 10.0.0.1

customer network 192.168.0.0/24
multi-connected network

- PBR can fix this.
transit LAN

• packets to the router interface may filter
private/non-routed backbone

- backbone hiding technique... but
- icmp error messages will be filtered.
 - traceroute can’t show the ISP1’s network
 - this also breaks PMTUD
IIJ’s case

- discussion
- router capability
- policy
- problems
internal discussion

• Do we need anti-spoofing in our network?
 – We heard a rumor that attackers don’t use ip spoofing anymore in these days.

• Answer is YES.
 – ip spoofing is still used for attacks.
 • dns amplification attacks
 – preparation for new attacks using ip-spoofing
kubo graph #1
kubo graph #2
router uRPF capability #1

• Cisco
 – uRPF loose/strict mode

• Cisco 72xx, 75xx
 – software processing.... 😞

• Cisco sup2, sup720
 – hardware support for uRPF/ACL 😊
 – one uRPF mode per box 😞
router uRPF capability #2

• Cisco 12xxx GSR
 – depends on engine type of line card
 – E0,E1: software processing
 – E2: per physical interface, exclusion ACL
 – E3: loose mode only
 – microcode reload...
router uRPF capability #3

- Juniper T/M
 - works fine 😊
 - ‘feasible’ means ‘set of same length prefixes’

<table>
<thead>
<tr>
<th>prefix</th>
<th>pref.</th>
<th>feasible</th>
<th>non-feasible</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0/24</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.0.0/24</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0.0.0/24</td>
<td></td>
<td></td>
<td>10.0.0.0/30</td>
</tr>
<tr>
<td>10.0.0.0/24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
router uRPF capability

• Cisco
 – depends on box/linecard
 – uRPF strict/loose mode are supported
 – some boxes use software processing
 • additional 5~20% cpu load

• Juniper
 – works fine
 – need some hack to export cflowd data of discarded traffic
our initial choice

• single homed user
 – simple 😊
 – uRPF strict mode or ACL

• multihomed user
 – bgp customer(ISPs)
 – enterprise (need for redundancy)
 – uRPF loose mode
 • ... something is better than nothing
IIJ’s policy

peer ISP

upstream ISP

IIJ/AS2497

customer ISP

single homed static customer

multi homed static customer

uRPF strict mode

uRPF loose mode
ACL and uRPF

• ACL
 – deterministic 😊
 • statically configured
 – maintenance of access-list 😞
• uRPF
 – easy to configure 😊
 – care about asymmetric routing 😞
 • strict mode is working well only for symmetric routing
 • loose mode can’t stop the ip reflected attack
 • there are few vendors support of feasible mode
problems

• uRPF/ACL works fine in most case. 😊
 – bug, device capability, performance...
• less confidence for uRPF
 – operations know uRPF, but never use it.
 – test it!
• unaware of Source Address Validation
 – why do we need this?
Why do we need?

• Source Address Validation do NOT protect your users from DoS/Attacks/Etc. directly.

• This reduce malicious activity.
 – sending ip spoofed packets from your network.

• If no networks allow ip spoofing, we can eliminate these kinds of attacks.
bogon traffic

1.8Mbps

150Mbps

6Kpps

36Kpps
please consider Source Address Validation in your network