Scaling issues with routing+multihoming

Vince Fuller, Cisco Systems

Acknowledgements

This is not original work and credit is due:

- Noel Chiappa for his extensive writings over the years on ID/Locator split
- Mike O'Dell for developing GSE/8+8
- Geoff Huston for his ongoing global routing system analysis work (CIDR report, BGP report, etc.)
- Jason Schiller and Sven Maduschke for the growth projection section (and Jason for tag-teaming to present this at NANOG)
- Tony Li for the information on hardware scaling
- Marshall Eubanks for finding and projecting the number of businesses (potential multi-homers) in the U.S. and the world

Problem statement

- There are reasons to believe that current trends in the growth of routing and addressing state on the global Internet may cause difficulty in the long term
- The Internet needs an easier, more scalable mechanism for multi-homing with traffic engineering
- An Internet-wide replacement of IPv4 with ipv6 represents a one-in-a-generation opportunity to either continue current trends or to deploy something truly innovative and sustainable
- As currently specified, routing and addressing with ipv6 is not significantly different than with IPv4 – it shares many of the same properties and scaling characteristics

A view of routing state growth: 1988 to now

IPv4 Current/near-term view - Geoff's BGP report

- How bad are the growth trends? Geoff's BGP reports show:
 - Prefixes: 130K to 170K (+30%) at end CY2005, 208K (+22%) on 2/15/07
 - ▶ projected increase to ~370K within 5 years
 - **→** global routes only each SP has additional internal routes
 - Churn: 0.7M/0.4M updates/withdrawals per day
 - projected increase to 2.8M/1.6M within 5 years
 - CPU use: 30% at 1.5Ghz (average) today
 - projected increase to 120% within 5 years
- These are guesses based on a limited view of the routing system and on low-confidence projections (cloudy crystal ball); the truth could be worse, especially for peak demands
- No attempt to consider higher overhead (i.e. SBGP/SoBGP)
- These kinda look exponential or quadratic; this is bad... and it's not just about adding more cheap memory to systems

Things are getting uglier... in many places

Philip Smith's NANOG-39 "lightening talk":

http://www.nanog.org/mtg-0702/presentations/smith-lightning.pdf

- Summary: de-aggregation is getting worse
 - De-aggregation factor: size of routing table/aggregated size
- For "original Internet", global de-agg factor is 1.85
 - North America: 1.69
 - EMEA: 1.53
- Faster-growing/developing regions are much higher:
 - Asia/Pacific: 2.48
 - Africa: 2.58
 - Latin/Caribbean: 3.40
- Trend may be additional pressure on table sizes, cause for concern

What if we do nothing? Assume & project

- Assume ipv6 widely deployed in parallel with IPv4
 - Need to carry global state for both indefinitely
- Multihoming trends continue unchanged (valid?)
- ipv6 does IPv4-like mulithoming/traffic engineering
 - "PI" prefixes, no significant uptake of shim6
- Infer ipv6 table size from existing IPv4 deployment
 - One ipv6 prefix per ASN
 - One ipv6 more-specific per observed IPv4 more-specific
- Project historic growth trends forward
- Caveat: lots of scenarios for additional growth

Estimated IPv4+ipv6 Routing Table (Jason, 11/06)

Assume that everyone does dual-stack tomorrow...

Current IPv4 Internet routing table:	199K routes		
New ipv6 routes (based on 1 prefix per AS):	+ 23K routes		
Intentional ipv6 de-aggregates:	+ 69K routes		
Combined global IP-routing table	291K routes		

- These numbers exceed the FIB size of some deployed equipment
- Of course, ipv6 will not be ubiquitous overnight
 - but if/when it is, state growth will approach projections
- This is only looking at the global table
- We'll consider the reality of "tier-1" routers next

Plot: projection of combined IPv4 + ipv6 global routing state

"tier-1" internal routing table is bigger

Current IPv4 Internet routing table:

New ipv6 routes (based on 1 prefix per AS):

Intentional de-aggregates for IPv4-style TE:

Internal IPv4 customer de-aggregates

Internal ipv6 customer de-aggregates

(projected from number of IPv4 customers)

Total size of tier-1 ISP routing table

199K routes

+ 23K routes

+ 69K routes

+ 50K to 150K routes

+ 40K to 120K routes

These numbers exceed the FIB limits of a lot of currently-deployed equipment... and this *doesn't* include routes used for VPNs/VRFs (estimated at 200K to 500K for a large ISP today)

Plot: global routing state + "tier-1" internals

Summary of big numbers

Route type	11/01/06	5 years	7 years	10 Years	14 years
IPv4 Internet routes	199,107	285,064	338,567	427,300	492,269
IPv4 CIDR Aggregates	129,664				
IPv4 intentional de-aggregates	69,443	144,253	195,176	288,554	362,304
Active Ases	23,439	31,752	36,161	42,766	47,176
Projected ipv6 Internet routes	92,882	179,481	237,195	341,852	423,871
Total IPv4/ipv6 Internet routes	291,989	464,545	575,762	769,152	916,140
Internal IPv4 (low est)	48,845	101,390	131,532	190,245	238,494
Internal IPv4 (high est)	150,109	311,588	404,221	584,655	732,933
Projected internal ipv6 (low est)	39,076	88,853	117,296	173,422	219,916
Projected internal ipv6 (high est)	120,087	273,061	360,471	532,955	675,840
Total IPv4/ipv6 routes (low est)	381,989	654,788	824,590	1,132,819	1,374,550
Total IPv4/ipv6 routes (high est)	561,989	1,049,194	1,340,453	1,886,762	2,324,913

Are these numbers insane?

- Marshall Eubanks did some analysis during discussion on the ARIN policy mailing list (PPML):
- How many multi-homed sites could there really be? Consider as an upper-bound the number of small-to-medium businesses worldwide
- 1,237,198 U.S. companies with >= 10 employees
 - (from http://www.sba.gov/advo/research/us_03ss.pdf)
- U.S. is approximately 1/5 of global economy
- Suggests up to 6 million businesses that might want to multihome someday... would be 6 million routes if multi-homing is done with "provider independent" address space
- Of course, this is just a WAG... and doesn't consider other factors that may or may not increase/decrease a demand for multi-homing (mobility? individuals' personal networks, ...?)

Won't "Moore's Law" save us? Maybe

- DRAM-based RIB/FIB should be able to ride growth curve, so raw size may not be a problem
 - Designers says no problem building 10M-entry RIB/FIB)
 - But with what tradeoffs? Power/chip space are real issues
- TCAM/SRAM are low-volume and have much lower growth rates; platforms that using those will have issues
- Forwarding ASICs already push limits of tech.
- "Moore's Law" tracks component density, not speed
 - Memory speeds improve at only about 10% per year
- BGP and RIB/FIB update rates are bounded by memory/CPU speeds and seem to be growing non-linearly; "meshiness" of topology is an issue

Hardware growth vs. routing state growth

Plot of growth trends vs. "Moore's Law"

Update and Withdrawal Rate Predictive Model

Source: Huston/Armitage - http://www.potaroo.net/papers/phd/atnac-2006/bgp-atnac2006.pdf

Current direction doesn't seem to be helping

- Original ipv6 strict hierarchical assignments
 - Fails in the face of large numbers of multi-homed sites
 - RIRs already moving away
- "PI for all" see the earlier growth projections
- "geographic/metro/exchange" constrains topology, requires new regulatory regime
 - "Addressing can follow topology or topology can follow addressing; choose one" Y. Rekhter
- Shim6 maybe workable for SOHO but nobody (SPs, hosting providers, end-sites) wanting it

So, why doesn't IP routing scale?

- It's all about the schizophrenic nature of addresses
 - they need to provide location information for routing
 - but also identify the endpoints for sessions
- For routing to scale, locators need to be assigned according to topology and change as topology changes ("Addressing can follow topology or topology can follow addressing; choose one" – Y. Rekhter)
- But as identifiers, assignment is along organizational hierarchy and stability is needed – users and applications don't want renumbering when network attachment points change
- A single numbering space cannot serve both of these needs in a scalable way (see "further reading" section for a more in depth discussion of this)
- The really scary thing is that the scaling problem won't become obvious until (and if) ipv6 becomes widely-deployed

Maybe we something other than "addresses"?

- What if instead of addresses there were "endpoint identifiers" associated with sites and "locators" used by the routing system?
 - Identifiers are hierarchically assigned to sites along administrative lines (like DNS hostnames) and do not change on devices that remain associated with the site; think "provider-independent" numbering but not routable
 - Locators are assigned according to the network topology; think "provider-based" CIDR block address assignments
 - Locators are aggregated/abstracted at topological boundaries to keep routing state scalable
 - When site's connection to network topology changes, so do the locators – aggregation is preserved

A new approach - continued

- This is not a new idea see the "additional reading" section for more discussion about the concepts of endpoint naming and topological locators
- October IAB-sponsored workshop found fairly good consensus among a group of ISPs, vendors, IESG, and IAB that the problem exists and needs to be solved... ID/LOC separation seems likely part of the solution
- More recent email list discussions suggest that we are far from good consensus (and ugly politics/egos in the IETF may be muddling things a bit)

ID/LOC separation – a little bit of why and how

Common concepts:

- Topologically-assigned locators (think "PA")
- Organizationally-assigned identifiers (think "PI")
- Two different dimensions of approaches/trade-offs:
 - Host-based vs. network/router-based (which devices change?)
 - New name space vs. re-use/re-purpose of existing name space
- Several past and present approaches:
 - 8+8/GSE ipv6 address format (split into two parts), router changes, limited host changes
 - shim6/HIP/SCTP new name space, major host changes
 - LISP IPv4/ipv6 address format (different roles for prefixes), no host changes, some router changes
 - NIMROD new name space, new routing architecture, no host changes (maybe)

Conclusions and recommendation

- Currently specified IPv4 and ipv6 do not offer a scalable routing and addressing plans
- None of the options proposed in recent Internet drafts on address assignment policies offer a viable solution; in fact, they generally make the problem worse by codifying the construction of a brandnew "routing swamp"
- Work on a scalable solution is needed. That work will probably involve separation of the endpoint-id and locator functions of addresses used today
- The problem may become urgent; given vendor development and SP testing/deployment schedules, a solution needs to be designed within the next year or so if it is to be deployed in time to avoid problems with routing state projections in the 5-to-7 year timeframe.
- Next step: working group/design team? Vendors/providers already discussing this (a la CIDR deployment). Does IETF want to be part of the solution or part of the problem?

Recommended Reading - historic

- "The Long and Winding ROAD", a brief history of Internet routing and address evolution, http://rms46.vlsm.org/1/42.html
- "Endpoints and Endpoint names: A Proposed Enhancement to the Internet Architecture", J. Noel Chiappa, 1999, http://ana.lcs.mit.edu/~jnc//tech/endpoints.txt
- "On the Naming and Binding of Network Destinations", J. Saltzer, August, 1993, published as RFC1498, http://www.ietf.org/rfc/rfc1498.txt?number=1498
- "The NIMROD Routing Architecture", I. Castineyra, N. Chiappa, M. Steenstrup. February 2006, published as RFC1992, http://www.ietf.org/rfc/rfc1992.txt?number=1992
- "GSE An Alternative Addressing Architecture for IPv6", M. O'Dell, http://ietfreport.isoc.org/idref/draft-ietf-ipngwg-gseaddr

Recommended Reading - recent work

- "2005 A BGP Year in Review", G. Huston, APRICOT 2006, http://www.apnic.net/meetings/21/docs/sigs/routing/routing-pres-husto
- "Projecting Future IPv4 Router Requirementas from Trends in Dynamic BGP Behavior", G. Huston and G. Armitage, http://www.potaroo.net/papers/phd/atnac-2006/bgp-atnac2006.pdf
- "Report from the IAB Workshop on Routing and Addressing", Meyer, D., Zhang, L., and Fall, K. (editors), http://www.ietf.org/internet-drafts/draft-iab-raws-report-00.txt
- "Locator/ID Separation Protocol", Farainacci, D., Fuller, V., and D. Oran,

http://www.ietf.org/internet-drafts/draft-farinacci-lisp-00.txt