Securing the Router Infrastructure

Ross Callon Distinguished Engineer

Juniper^M

- Securing the router infrastructure
- Examples of attacks and defenses
- A call to action
- References

Securing the router infrastructure

- Examples of attacks and defenses
- A call to action
- References

Securing the Router Infrastructure

- Links, routers, routing protocols, and management thereof
 - Are critical network components
 - Must work securely
- These can be strongly secured
 - Very few systems have a valid reason to send traffic to the router's control plane

(rather than *via* the router's data plane)

Invisible Routers

- Packet filters block end user data to routers
 - Not *via* routers, of course ;-)
- Configuration (or filters) blocks data from routers to end users
- "Holes" are poked in filters for
 - Other internal routers
 - EBGP peers
 - Network management stations
 - Directly attached hosts / subnets (eg, servers)

Juniper Ladd

Net

Filter Issues

- Location
 - At ingress to the network, or
 - At ingress to the router
- How to specify "all packets to routers in this net"
 - If routers use dedicated common address prefix, this may be easy to specify
 - Otherwise, may be difficult or impractical
- Performance must be acceptable
- Packet filters versus "null" routes at edge

Untouchable Routers

In some cases routers may need to be visible

- Eg, ICMP to directly attached hosts, PE routers, allow traceroute, multicast
- Traffic to routers can be limited
 - Filtered to limit access
 - Rate limited to prevent resource saturation
 - Source address verification to prevent hackers from getting around filters
 - (Stateful filters to protect E-BGP sessions, directly attached hosts)

Protecting Routing Protocols

- Routing traffic may be authenticated or encrypted
 - Prevents unauthorized systems from hijacking routing protocols

Juniper Lad V Net

- Compromised routers are a potential problem
- Does not protect against DoS
 - Protect router's CPU
 - Prioritize routing traffic on links
 - Compartmentalize resources

Protecting Network Management

- Compromised routers are potentially very bad
- Network Management is a significant current vulnerability
 - Poor password selection
 - Simple passwords + decryption / sniffing tools
 - "Password crackers can now break anything that you can reasonably expect a user to memorize"

(Bruce Schneier, Secrets and Lies)

Juniper Ladu

Management and Control

- Login Authentication
 - One-time passwords
 - Change control
 - Logging
 - Secure the machines that control all of this

Juniper Ladu

- Out-of-band management access (logical or physical)
- Filtering access to management plane
- Automate repetitive tasks

Router Implementation Details

- Separate Data Plane from Control Plane
- Prioritize critical control traffic and processes
 - On ingress to router, egress from router
 - CPU, memory, data paths internal to router
- Compartmentalize resources
 - Guarantee resources to specific processes
 - Limit resources used by multicast
 - This puts requirements on Operating System

Juniper Ladd

Servers on the Router?

- Some have proposed putting servers on the routers
- Servers are *fundamentally* less secure
 - Many systems have a legitimate reason to send traffic to most servers (eg, DNS, WWW)
 - Server software is frequently not secure

Juniper Laav

- In theory this might be securable
- In practice, opens up major vulnerability

Securing the router infrastructure

Examples of attacks and defenses

- A call to action
- References

DDoS Attacks versus Routers

- Attacker compromises multiple hosts, using them for coordinated attack
- Any device attached to network will be attacked (including routers)
- Packet filters are most direct way to handle DDoS vs routers
 - Preferably turned on a priori

Slammer, January 2003

Slammer worm

- Self-contained worm in one UDP message
 - Used otherwise unused UDP ports
- Random source and destination addresses
- Very rapid propagation (doubles in ~8sec)
- Widespread congestion throughout Internet
- Results were "interesting" from a router and network design viewpoint

Juniper Lad

Some Slammer Lessons

- One major service provider was unaffected
 - Had turned off unused UDP Ports a priori
- Packet filters used to shut down attack
- Many networks were seriously impacted
 - Many deployed routers have inability to filter without severe performance impact
 - Some routers lost Hellos \Rightarrow links disconnected

Juniper Lov Net

- Network management failures
- Processor failure / congestion

- Securing the router infrastructure
- Examples of attacks and defenses
- A call to action

References

Critical Basic Router Security

- Protect Network Management
 - Eg, Log access, One-time passwords
- Line-rate packet filtering and rate limiting
- Protect control traffic during congestion
 - Routing should be stable at all times (even during a DoS attack)
 - Network management should be available at all times (even during a DoS attack)

Juniper Ladu

A Call to Action

- Security is a long term issue
- Develop security strategy
- Educate staff
- Deploy the most obvious protection
- Deploy equipment which is capable of critical basic router security
 - When you need it, this turns a major forklift upgrade into a configuration problem

Juniper Lady

Pay attention to performance

- Securing the router infrastructure
- Examples of attacks and defenses
- A call to action
- References

NRIC Best Practices for Security

- Network Reliability and Interoperability Council (NRIC) has put together best practices for network security
 - Go to NRIC Main Page: www.nric.org
 - Click on "NRIC best practices". This takes you to the Best Practices Selector Tool
 - In the "Add Keywords" box at the bottom left, select "Cyber Security"
 - Scroll down, Hit "Go"
 - See 175 cyber-security best practices
- SPs are encouraged to: Study, prioritize, deploy where appropriate

Juniper Loud Net

RFC 3871: Operational Security Requirements for Large ISP IP Network Infrastructure

- This is based (with permission) on internal requirements of a major service provider
- Provides excellent overview of requirements for secure equipment
- IETF OPsec working group is continuing effort
 - General Discussion: opsec@ops.ietf.org
 - To subscribe: opsec-request@ops.ietf.org

Juniper Ladu

• In Body: subscribe

Juniper Papers

 Juniper Networks Router Security, Best Common Practices for Hardening the Infrastructure

www.juniper.net/solutions/literature/ app_note/350013.pdf

 Internet Processor II ASIC: Fortifying the Core www.juniper.net/solutions/literature/ app_note/350002.pdf

Juniper Vool Net

 Minimizing the Effects of DoS Attacks www.juniper.net/solutions/literature/ app_note/350001.pdf

Thank You

