Security Framework for the IPv6 Era

SUZUKI, Shinsuke (Hitachi, Ltd. / KAME Project / WIDE Project Secure-6 WG) <u>suz@crl.hitachi.co.jp</u> / <u>suz@kame.net</u> HIROMI, Ruri (Intec NetCore, Inc. / WIDE Project Secure-6 WG) <u>hiromi@inetcore.com</u>

Outline

- 1. Legacy security framework
- 2. What is necessary in IPv6 network?
- 3. Quarantine Network

* Backbone-network issue is out of scope in this presentation (e.g. DoS, source-spoofing, Phishing)

1.1. Various kinds of Security Frameworks

- Perimeter Defense
 - e.g. Firewall, VPN
 - Legacy IPv4 operational security
 - to drop unnecessary traffic from inside / outside
- Edge Defense
 - e.g. IPsec (Transparent-mode), Personal Firewall
 - Current IPv6 protocol-level security
 - to keep Confidentiality/Integrity/Authentication of communication
- Object Defense
 - e.g. Data encryption, Access authentication, Mandatory Access Control, Anti-virus software
 - Recent IPv4 operational security
 - to drop application-level attack (e.g. spam, virus, worm, spy-ware, theft) on a PC

1.2. Assumptions in Each Framework

- Each framework has some assumptions
 - Perimeter Defense
 - "all the communication MUST goes through a firewall"
 - "communication" = Web/Mail/FTP
 - A host does not physically move so frequently
 - A host cannot have an external connectivity by itself
 - Edge Defense
 - "A user may make any communication as he/she wants"
 - Object Defense
 - "A user must/can defend oneself by him/herself"

1.3. Advantages/Disadvantages in Each Framework

- Perimeter Defense
 - Advantages
 - concentrated management
 - Disadvantages
 - uncovered security threats (e.g. insider attack)
 - difficulty in user-specific customization (e.g. "it's secure, but I cannot work!")
 - singular point of failure (e.g. network performance)
- Edge Defense
 - Advantages
 - user-specific customization (e.g. end-to-end encrypted session)
 - Disadvantages
 - difficulty in consistent management (e.g. security policy, traffic inspection)
- Object Defense
 - Advantages
 - detailed inspection
 - user-specific customization
 - Disadvantages
 - difficulty in consistent management (e.g. operational mistake, zero-day attack)

1.4. Current Deployment Status

• Perimeter Defense is still preferred by administrators, because it fully satisfies the administrators' requirement:

- Administrators' requirement
 - manageable security
 - Enforce a security policy to all the nodes in a centrally consistent manner
- Users' requirement
 - customizable and easy security
 - Obtain a user-specific security policy automatically

Apricot2005, Feb 2005

2.1. What Does Perimeter Defense Matter with IPv6?

- Perimeter Defense often unnecessarily restricts communication
 - Non-problematic user operation is denied, because of the management difficulty...
- Essentially not an IPv6-specific issue
 - but getting much more serious in IPv6, since it completely denies the benefit of IPv6 by nature
 - Plug & Play
 - non-PC equipment
 - end-to-end (encrypted) communication
 - new applications Apricot2005, Feb 2005

2.2. What Is Necessary?

- Integration of "Manageable Security" and "Customizable and Easy Security"
 - automatic integration is desirable
 - should work in IPv4 as well as in IPv6
- Integration way is different, depending on
 - the definition of a "security policy"
 - network environment
- This makes the things complex...

e.g.) Security Policy Examples

- ISP network
 - Customers may make any communication, if it does not interfere with other customer's communication severely

 \rightarrow Traffic management is important

- Enterprise network
 - Customers may make any communication, if it contributes to the profit of the enterprise

 \rightarrow Detailed contents management is important

- SOHO network
 - Provide every service to the very limited number of customers

 \rightarrow Customer authentication is important

2.3. How To Proceed?

- There are two ways
 - Newly create a protocol to synchronize between a host and a network manager
 - Just make use of such existing mechanism
- Each way has its own pros and cons
 - New protocol
 - vendor-neutral
 - general-purpose protocol is quite difficult
 - Existing Mechanism
 - Can be vendor-specific
 - easier because it is often dedicated for a single purpose solution
- The latter one seems practical

3.1. Quarantine Network

- Quarantine Network
 - Framework to provide a precise and refined network management
 - dynamic network separation based on the security level of a node
- Equivalent to a quarantine procedure in the immigration at an international-airport

3.2 Components of the Quarantine Network

- Security Level Management
 - by Quarantine Server
 - monitors the security level of a node
 - accomplished by a legacy auditing tool
- Dynamic Network Separation
 - by Policy Enforcer
 - accommodate the node to a network segment according to the security level of the node
 - accomplished by several methods (Layer2, Layer3, Layer4, Layer7)

e.g.) How to Integrate Security Framework in Quarantine Network?

- ISP
 - Security Level Measurement
 - Amount of traffic from a PC
 - Dynamic Separation
 - heavy-user, ordinary-user, malicious-user
- Enterprise
 - Security Level Measurement
 - Installed software on a PC (e.g. Anti-virus software)
 - Dynamic Separation
 - staff, staff not installing the required software, guest
- SOHO
 - Security Level Management
 - User authentication
 - Dynamic Separation
 - staff, guest

3.3. Implementation Status

- Security Level Management
 - Legacy auditing tools seems satisfactory
- Dynamic Network Separation
 - Layer2: IEEE802.1x (not specific to IPv6)
 - several vendors
 - Layer3: PANA/DHCPv6
 - WIDE Project Secure6 WG
 - Layer4: Tunnel-Broker
 - Layer7: Distributed Firewall
 - Euro6IX

3.4. Issues in Dynamic Network Separation

- Yet Another Management
 - Layer2
 - Layer3 address need be managed, together with Layer2 management
 - Layer7
 - How to describe/distribute/confirm a policy for every node?
- Encrypted Communication
 - Layer2, Layer3, Layer4
 - cannot manage encrypted communication in the middle
- Protocol Independence
 - Layer3, Layer4, Layer7
 - Need to do the same thing for IPv4, too.
- Access Concentration
 - Layer4
 - a bottle neck in performance, or a single point of failure

3.4 Remaining Issues

- Analysis of a Possible Vulnerability in Quarantine Network itself
- Evaluation in the Actual Operation
 - really IP-version independent?
 - tolerable delay /performance?
 - Comparison between installation/running-cost and the hedged risk

4. Conclusion

- (Automatic) Integration of Perimeter Defense, Edge Defense, and Object Defense is necessary in the IPv6 era
- Introduced Quarantine Network as an integration example

c.f.) What's going on in standardization?

- IETF v6ops WG
 - Trying to summarize IPv6 security overview
 - Based on that overview, ask Security Area people to work on specific items
 - slow and steady progress
- IETF netconf WG
 - XML-based network configuration protocol
 - Originally aiming at a router/switch configuration
 - protocol is almost done, and working on data-model