hange Log (Hidden Slide)

ase	Date	Owner	Changes
)	17-Oct-2011	Jeff Apcar	Reformatted previous V1.9 into new Cisco style (greens/yellows) *Draft* Added a new connected devices growth chart replacing IBSG one
I 30-Nov-2011 Jeff Apcar		Jeff Apcar	Further updates to tables, SUN information, Updated RPL technical concepts, added Object Code Point Slide Clarified constraints and metrics distribution Released for review by BU team

sco

P in Smart Object Networks

f Apcar tinguished Services Engineer

acknowledgement to JP Vasseur o Fellow, Co-Chair IETF Roll Working Group, TAB Chair IPSO Alliance

isco and/or its affiliates. All rights reserved

genda

- world of sensors
- mart Objects
- ow Power Lossy Networks (LLN)
- 02.15.4 Low Power PAN
- Ising IP for Smart Objects
- LoWPAN Working Group
- Roll Working Group
- Routing over Low Power Lossy Networks (RPL)
- Conclusion

World of Sensors

Mostly RS485 wired actuators/sensors

Predictive Maintenance

Generally proprietary architectures for specific applications •

Energy Saving Smart Grid

High-Confidence Transport and Asset Tracking

Enable New Knowledge

Intelligent **Buildings**

Improve **Productivit**

Enhanced Safety & Security

Improve Food and H²O

Smart Home S+CC

Healthcare

World of Proprietary Protocols

- lany legacy networks use closed and proprietary protocols
- Each with different implementations at each layer (Physical, Link, Network)
- Many non-interoperable "solutions" addressing specific problems
- Resulting in different architectures and protocols
- nteroperability partially addressed (poorly) by protocol gateways
- Inherently complex to design, deploy and manage
- Results in inefficient and fragmented networks, QOS, convergence
- Similar situation to computer networks in the 1980s
- Islands of systems communicating using SNA, IPX, Appletalk, DECnet, VINES
- Interconnected using multiprotocol gateways

he Internet of Things

- Standardise IP into sensors and other smart objects
- Any object or environmental condition can be monitored
- Expand the current Internet to virtually anything and everything
- Form the Internet of Things

"A pervasive and ubiquitous network which enables monitoring and control of physical environment collecting, processing, and analysing the data generated b Smart-Objects"

mart Objects

isco and/or its affiliates. All rights reserved.

'hat is a Smart Object?

- tiny and low cost computing device that may contain
- A sensor that can measure physical data (e.g., temperature, vibration, pollution)
- An actuator capable of performing a task (e.g., change traffic lights, rotate a mirror)
- A communication device to receive instructions, send data or possibly route information
- his device can be embedded into objects (to make them smart 🙂)
- For example, thermometers, car engines, light switches, gas meters
- mart Objects enable many sophisticated applications and solutions
- Smart+Connected Communities
- Smart Grid and Energy Management
- Home and Building Automation
- **Connected Health**
- Smart Objects can be organised into networks

haracteristics of Smart Objects

- hese devices are highly constrained in terms of
- Physical size
- CPU power
- Memory (few tens of kilobytes)
- Bandwidth (Maximum of 250 KB/s, lower rates the norm)
- Power consumption is critical
- If it is battery powered then energy efficiency is paramount
- Batteries might have to last for years
- lay operate in harsh environments
- Challenging physical environment (heat, dust, moisture, interference)
- Vireless capabilities based on Low Power & Lossy Network (LLNs) technology
- Predominantly IEEE 802.15.4 (2.4 GHz and 900 MHz)
- Newer RF technologies IEEE 802.15.4g Smart Utility Network (SUN)

ow Power ossy Networks (LLN)

isco and/or its affiliates. All rights reserved.

hat is a Low Power Lossy Network (LLN)?

LNs comprise a large number of highly constrained devices (smart objects) interconnected by redominantly wireless links of unpredictable quality

- LNs cover a wide scope of applications
- Industrial Monitoring, Building Automation, Connected Home, Healthcare, Environmental Monitoring, Urba Sensor Networks, Energy Management, Asset Tracking, Refrigeration

Several IETF working groups and Industry Alliance addressing LLNs

IETF - CoRE, 6Lowpan, ROLL

Alliances - IP for Smart Objects Alliance (IPSO)

World's smallest web server

haracteristics of LLNs

- LNs operate with a hard, very small bound on state
- LNs are optimised for saving energy in the majority of cases
- raffic patterns can be MP2P, P2P and P2MP flows
- ypically LLNs deployed over link layers with restricted frame-sizes
- Minimise the time a packet is in the air hence the small frame size
- The routing protocol for LLNs should be adapted for such links
- LN routing protocols must consider efficiency versus generality
- Many LLN nodes do not have resources to waste

TF LLN Related Workgroups

sco and/or its affiliates. All rights reserved

for Smart Objects (IPSO) Alliance

- PSO Alliance formed drive standardisation and inter-operability
- Create awareness of available and developing technology
- s of 2011 More than 50 members in the alliance
- Ocument use of new IP based smart object technologies
- Generate tutorials, webinars, white papers and highlight use cases
- Provide an information repository for interested parties
- Coordinate and combine member marketing efforts
- Support and organise interoperability events COMPLIANCE program (Based on IPv6 forum)
- ttp://www.ipso-alliance.org

EEE 802.15.4 PAN

isco and/or its affiliates. All rights reserved.

02.15.4 Scope

- nitial activities focused on wearable devices Personal Area Networks"
- Activities have proven to be much more diverse and varied
- Data rates from Kb/s to Gb/s
- Ranges from tens of metres to Kilometres
- Frequencies from MHz to THz
- Various applications not necessarily IP based
- Focus is on "specialty", typically short range, communications
- If it is wireless and not a LAN, MAN, RAN, or WAN, odds are its 802.15
- The only IEEE 802 Working Group with multiple

"The IEEE 802.15 TG4 was chartered t investigate a low data rate solution wit multi-month to multi-year battery life an very low complexity. It is operating in a unlicensed, international frequency band. Potential applications are sense interactive toys, smart badges, remote controls, and home automation."

<u>http://www.ieee802.org/15/pub/TG4.html</u> IEEE 802.15 WPAN™ Task Group 4 (TG4) Cha

EE Wireless Standards

EE 802.15.4 Features

- Designed for low bandwidth, low transmit power, small frame size
- More limited than other WPAN technologies such as Bluetooth
- Low bit rate and packet size to ensure reasonably low packet error rates
- Packet size (127 bytes) reflects minimal buffering capabilities in Smart Objects
- Low power allows batteries to last for years
- Transmission Range varies
- ully acknowledged protocol for transfer reliability
- Data rates of 851, 250, 100, 40 and 20 kbps (IEEE 802.15.4-2011 05-Sep-2011)
- Frequency and coding dependent
- wo addressing modes; 16-bit short (local allocation) and 64-bit IEEE (unique global)
- possible unlicensed frequency bands
- (Europe 868-868.8 MHz 3 chans , USA 902-928 MHz 30 chans, World 2400-2483.5 MHz 16 chans)

EE 802.15.4 Node Types

ull Function Device (FFD)

- Can operate as a PAN co-ordinator (allocates local addresses, gateway to other PANs)
- Can communicate with any other device (FFD or RFD)
- Ability to relay messages (PAN co-ordinator)

Reduced Function Device (RFD)

- Very simple device, modest resource requirements
- Can only communicate with FFD
- Intended for extremely simple applications

EE 802.15.4 Topologies

Operates at Layer 2

- All devices communicate to PAN co-ordinator which uses mains power
- Other devices can be battery/scavenger

• Devices can communicate directly if within range

 Higher layer protocols like RPL may create their own topology that do not follow 802.15.4 topologies

Single PAN co-ordinator exists for all topologies

Ising IP for mart Objects

isco and/or its affiliates. All rights reserved.

in Smart Object Networks

- oday's computer networks are almost exclusively IP based
- Provides end-to-end reliable connectivity
- Brings scalability, flexibility and reliability
- Supports wide a range of devices, transports and applications
- Email, WWW, VOIP, Video, Collaboration
- Smart Object Networks standardising on IP
- General consensus is that IP based Smart Objects networks are the future
- Move away from proprietary and closed protocols
- Solid standardisation base allows future innovation
- Allows quick adoption of emerging applications
- Allows the creation of the "Internet of Things"

is both an Architecture & Protocol

can meet all the requirements to support a Smart Object Network

- Based on open standards
- IETF RFCs
- lexibility in many dimensions
- Support a wide range of media Serial, SDH, Ethernet, DWDM, FR, ATM
- Support a wide range of devices From phones to routers
- Iways favor global than local optimum
- IP is capable of supporting many different applications; voice, video, data, mobile
- Secure
- Plug & Play
- calable
- The Internet comprises billions of connected devices

v4 or IPv6

- he current Internet comprises several billion devices
- Add to this growing 3G, 4G mobile devices
- There is no scope for IPv4 to support Smart Object Networks
- mart Objects will add tens of billions of additional devices
- Pv6 is the only viable way forward
- Solution to address exhaustion
- Stateless Auto-configuration thanks to Neighbour Discovery Protocol
- some issues with IPv6 address size
- Smart Object Networks use low power wireless with small frame size
- Solution to use stateless and stateful header compression (6LoWPAN)

DIBSG projections, UN Economic & Social Affairs http://www.un.org/esa/population/publications/longrange2/WorldPop2300final.pdf

ontiki + uIPv6 Code for Smart Objects

- Contiki is a memory efficient O/S for smart objects
- Open source operating system for the Internet of Things
- IPv6 is world's small certified stack for objects such as actuators and sensors
- uIPv6 does not require an O/S (such as Contiki)
- Able to run over any link layer (for example, 802.15.4)
- II IPv6 features (except MLD) are implemented from RFC4294
- Obtained IPv6 ready phase 1 logo
- Dpen source release http://www.sics.se/contiki
- lemory requirements for IPv6/6LoWPAN/802.15.4
- 35K ROM 3K RAM (minimal O/S features)
- 40KB ROM 10KB RAM (full O/S features)

Minimal

LoWPAN Vorking Group

© 2010 Cisco and/or its affiliates. All rights reserved.

Cisco Confidential

Cisco Confidential

hat is 6LoWPAN ?

- Pv6 over Low power Wireless Personal Area Networks
- An adaptation layer for IPv6 over IEEE 802.15.4 links
- Vhy do we need an adaption layer?
- IEEE 802.15.4 MTU is only 127 bytes, IPv6 minimum MTU is 1280 bytes
- IPv6 does not do fragmentation, left to end nodes or lower layers
- Performs 3 functions each with its own 6LoWPAN header
- IPv6 Header compression
- IPv6 packet fragmentation and re-assembly
- Layer 2 forwarding (also referred to as mesh under)
- RFC4919 defines the Problem Statement
- RFC4944 defines Transmission of IPv6 Packets over IEEE 802.15.4
- Improved header compression being worked on may deprecate RFC4944

smart object networks go better with IPv6 & IEEE 802.15.4

asic IPv6 Header

Ainimum headersize is 40 bytes (double that of IPv4)

- Basic header can be extended by additional headers
- ragmentation must be performed by end nodes

_oWPAN Header Stacks

Several 6LoWPAN headers are included when necessary

- IPv6 compression header
- Fragmentation header (eliminated if single datagram can fit entire IPv6 payload)
- Mesh or Layer 2 forwarding header (currently not used/implemented)

OLL Working Group

© 2010 Cisco and/or its affiliates. All rights reserved.

hat is ROLL?

- Routing Over Low power and Lossy Networks (2008)
- http://www.ietf.org/html.charters/roll-charter.html
- Co-chairs: JP Vasseur (Cisco), David Culler (Arch Rock)
- lission: To define routing solutions for LLNs
- pplication specific LLN routing RFC have been developed

FC	Application	Title
FC 5673	Industrial	Industrial Routing Requirements in Low-Power and Lossy Networks
FC 5548	Urban	Routing Requirements for Urban Low-Power and Lossy Networks
FC 5826	Home	Home Automation Routing Requirements in Low-Power and Lossy Networks
FC 5867	Building	Building Automation Routing Requirements in Low-Power and Lossy Networks

- specifying the routing protocol for smart object networks
- Routing Protocol for LLNs (RPL) currently WG document

/here Should Routing Take Place ?

- listorically, a number of interesting research initiatives on WSN
- Work on Wireless Sensors Network focussed on algorithms ... not architecture
- lost work assumed the use of MAC addresses
- Layer 2 "routing" (mesh-under)
- Support of multiple PHY/MAC is a MUST
- IEEE 802.15.4, Low Power Wifi, Power Line Communications (PLC)
- Ise IP to route
- Supports multiple PHY/MAC
- Moves from mesh-under (L2) to router-over(L3)

haracteristics of Internet vs SObject Networks

Current Internet	Smart Object Networks
es are routers	Nodes are sensor/actuators and routers
with typically few hundreds of 100 nodes	An order of magnitude larger in nodes
s and Nodes are stable	Links are highly unstable Nodes fail more frequently
e and link bandwidth constraints are generally non-issues	Nodes & links are high constrained
ting is not application aware	Application-aware routing, in-Band processing is a MUST

echnical Challenges

Energy consumption is a major issue (battery powered sensors/actuators)

- _imited processing power
- Very dynamic topologies
- Link failure
- Node failures (triggered or non triggered)
- Node mobility (in some environments)
- Data processing usually required on the node itself
- Sometimes deployed in harsh environments (Industrial)
- Potentially deployed at very large scale (millions of nodes)
- Must be self-managed (auto-discovery, self-organizing networks)

urrent Routing Protocols

- he current IGPs (OSPF, ISIS) rely upon static link metrics
- Used to create best/shortest path to destination
- No account taken of node/router status (high CPU, hardware failures)
- lot suitable for the dynamic nature of an LLN with many variables
- Wireless Signal Strength and Quality
- Node resources such as residual energy
- Link throughput and reliability
- GP needs the ability to consider different metric/constraint categories
- Node vs Links
- Qualitative vs Quantitative
- Dynamic vs Static

Couting over low Cower Lossy etworks (RPL)

PL - Routing Protocol for LLNs

- RPL is an extensible proactive IPv6 distance vector protocol
- Builds a Destination Oriented Directed Acyclic Graph (DODAG) based on an objective
- RPL supports shortest-path constraint based routing applied to both links and nodes Supports MP2P, P2MP and P2P between devices (leaves) and a root (border router)
- RPL specifically designed for "Lossy" networks
- Agnostic to underlying link layer technologies (802.15.4, PLC, Low Power Wireless)
- RPL supports different LLN application requirements
- RFC 5548 (Urban) RFC 5673 (Industrial) RFC 5826 (Home) RFC 5867 (Building)
- ttp://datatracker.ietf.org/doc/draft-ietf-roll-rpl/
- Currently on last call implementation 19 (Feb 2011)

RPL is pronound "Ripple"

Vhat is a DAG?

Directed Acyclic Graph

In the context of routing, a DAG is formed a collection of vertices (nodes) and edges (links).

Each edge connecting one node to anothe (directed) in such a way that it is not possible to start at Node X and follow a directed path that cycles back to Node X (acyclic).

A Destination Oriented DAG is a DAG that comprises a single root node.

PL Instances

- RPL can form multiple instances
- Each instance honours a particular routing objective/constraint
- Instance consists one or more DODAGs derived from the same OBJECTIVE FUNCTION (OF)
- Nodes select a parent (towards root) based on metric, OF and loop avoidance
- Illows upwards and downwards routing (from DODAG root)
- rickle timers used to suppress redundant messages
- Saves on energy and bandwidth (Like OSPF exponential backoff)
- Inder-react is the rule
- Local repair preferred versus global repair to cope with transient failures

PL DODAGs

- RPL enables nodes to discover each other and form DODAGs
- Uses ICMPv6 control messages with RPL message codes
- ach root uses a unique DODAG ID (IPv6 address) to identify itself within an RPL Instance
- Routing is performed over the DODAG using distance vector techniques
- every hop to the root MUST have an alternate path
- (Quite possible and expected with wireless/radio networks)
- DODAG will ensure nodes always have a path up towards the root
- DODAG is identified by {RPL Instance ID, DODAG ID}

bjective Function (OF)

- In OF defines how nodes select paths towards DODAG root
- Dictates rules on how nodes satisfy a optimisation objective (e.g., minimise latency)
- Based on routing metrics and constraints carried ICMPv6 control messages
- he OF computes a device rank relative to its distance from the DODAG root

- Perived rank is advertised to other nodes
- OF decoupled from the routing protocol
- he RPL specification does not include OF definitions
- OF related to specific applications defined in separate documents (RFCs)
- One Objective Function = One RPL Instance {One or more DODAGS}

bjective Code Points (OCP)

- The OCP indicates the method that must be used to construct the DODAG to meet an OF
- It allows nodes to be consistent in their rank calculations (all follow the same rules)
- Defines how node should combine a set of metrics and constraints in a consistent manner
- Allows nodes to select DODAG parents and derive a rank to advertise to neighboring nodes

PL allows OCP to be v	ery flexible in its methods and use of constraints

Example	OCP Method	DODAG Root
Fixed	Link Latency MUST be < 10 seconds	DODAG root cannot override latency constraint
Iexible	Link Latency SHOULD be < 10 seconds	DODAG root can advertise new latency constraint
General	Use link with best latency	DODAG root does not advertise any constraint
Defer	Link Latency should meet advertisedconstraint	DODAG root advertises actual constraint

ODAG root can advertise constraints in ICMPv6 messages

bjective Code Points are 16 bit values assigned by IANA

OCP0 defined as the default objective function http://datatracker.ietf.org/doc/draft-ietf-roll-of0/

outing Metrics and Constraints in LLNs

onstraint	Provides a path filter for more suitable nodes and links
etric	A quantitative value used to evaluate a path cost

- Concept of routing objects that can be treated as a metric or a constraint
- Low pass thresholds used to avoid unnecessarily recomputing DAG
- Metrics and constraints are advertised in DIO messages
- Computing dynamic metrics takes up power and can change rapidly Solved by abstracting number of discrete values to a metric

ttp://datatracker.ietf.org/doc/draft-ietf-roll-routing-metrics/

Specifies the set of link and node LLN routing metrics and constraints

urrent Routing Metric/Constraint Objects in LLNs

Node Object

Link Object

e State and Attributes Object Purpose is to reflects node workload (CPU, Memory) "O" flag signals overload of resource "A" flag signal node can act as traffic aggregator	Throughput Object Currently available throughput (Bytes per second) Throughput range supported
 Energy Object "T" flag: Node type: 0 = Mains, 1 = Battery, 2 = Scavenger "I" bit: 0 = Exclude, 1 = Include (bits set in node type field) "E" flag: Estimated energy remaining flag "E-E" field contains estimated % energy remaining 	Latency Can be used as a metric or constraint Constraint - max latency allowable on path Metric - additive metric updated along path
Count Object Can be used as a metric or constraint Constraint - max number of hops that can be traversed Metric - total number of hops traversed	Link Reliability Link Quality Level Reliability (LQL) 0=Unknown, 1=Highest7=Lowest Expected Transmission Count (ETX) (Average number of TX to deliver a packet)
	Link Colour Metric or constraint, arbitrary admin value

k and Node metrics are usually (but not necessarily) additive along a path to the DODAG root

dvertising Routing Metrics

lode advertise node and link metrics in a DIO message metric container

letrics can be recorded or aggregated along the path up to the DODAG root

In aggregated routing metric can be processed in several ways

Agg Type	Processing	Metric at 5
00xC	The routing metric is additive	22
Dx01	The routing metric reports a maximum	8
0x02	The routing metric reports a minimum	3
Dx03	The routing metric is multiplicative	5760

MPv6 RPL Control Messages

ssage	Meaning	Function
)	DODAG Information Object	DODAG discovery, formation, maintenance
3	DODAG Information Solicitation	Probe neigbourhood for nearby DODAGs (DIO messages
0	Destination Advertisement Object	Propagates destination information up DODAG
O-ACK	DAO Acknowledgement	Unicast acknowledgement to a DAO message
	Consistency Check	Check secure message counters (for secure RPL)

- CMPv6 message type 155 RPL Control message
- Each RPL control message has a secure variant (Refer Section 6.1 of RPL specification)
- lost RPL control messages have scope of a link
- Exception is DAO/DAO-ACK in non-storing mode passes over multiple hops

PL Identifiers

PL Supported Traffic Flows

ODAG Neighbours and Parent Selection

PL Security

- RPL supports optional message confidentiality and integrity
- Link-layer mechanisms can be used instead when available
- RPL security mechanisms can be used in the absence of link-layer
- Refer to Section 10 of RPL standard

RPL supports three security modes

curity Mode	Description
secured	RPL message sent unsecured - may underlying security mechanisms
e-installed	RPL nodes use same pre-shared/installed key to generate secure RPL messages
thenicated	Uses pre-installed key to allow RPL node to join as a leaf only To function as a router requires obtaining a key from authentication authority

PL Loop Detection

- Pata path validation used to check for loops (Simple mechanism)
- IPv6 options header carries rank of transmitter
- node receives packet with rank <= to its own, drop packet
- Detection happens when link is actually used.

ODAG Examples

ODAG Examples

Geographic Layout

- DIO messages are propagated from the DODAG root
- Can carry OCP, metrics (recorded or aggregated), constraints

bjective Function Example #1 - Candidate Neighbours

bid solar powered nodes and use the best available links (additive) to get to the DODAG root

Constraint Advertise Object Node Energy Exclude Scavenger As per O 3 Link Quality Best Available (additive) As per O **Additive** Hop Count Maximum 20 Explicitly Value configure DODAG r Additive LQL LQL=3 (Poor) LQL metric advertised as additive DIO LQL=2 (Fair) Nodes choose links with lower LQL tota **DIO** containing IPv6 Core LQL=1 (Good) -**Objective Function** (OCP) Solar powered S Delay on that link 10

DODAG Topology

Objective Function

bjective Function Example #1 - Preferred Parents

bid solar powered nodes and use the best available links (additive) to get to the DODAG root

and/or its affiliates. All rights reserved

bjective Function Example #1 - Resulting DODAG

bid battery powered nodes and use the best available links (additive) to get to the DODAG root

6 Additive LQL LQL=3 (Poor) DIO LQL=2 (Fair) **DIO** containing IPv6 Core LQL=1 (Good) -**Objective Function** (OCP) Solar powered S Delay on that link 10

DODAG Topology

Objective Function

Object	Constraint	Advertise
Node Energy	Exclude Scavenger	As per O
Link Quality	Best Available (additive)	As per O
Hop Count	Maximum 20	Explicitly configure DODAG r

- LQL metric advertised as additive
- Nodes choose links with lower LQL tota

bjective Function Example #2 - Candidate Neighbours

e shortest number of hops and avoid low energy nodes

Obje	ective	Functi	on
------	--------	--------	----

Object	Constraint	Advertised
Hops	Minimum Hops	As per OCP
Energy	Avoids nodes in path with < 50% energy	As configure DODAG root

bjective Function Example #2 - Preferred Parents

e shortest number of hops and avoid low energy nodes

Objective Function

Object	Constraint	Advertised
Hops	Minimum Hops	As per OCP
Energy	Avoids nodes in path with < 50% energy	As configure DODAG root

bjective Function Example #2 - Resulting DODAG

e shortest number of hops and avoid low energy nodes

Objective Function

Object	Constraint	Advertised
Hops	Minimum Hops	As per OCP
Energy	Avoids nodes in path with < 50% energy	As configure DODAG roof

PL Summary

- RPL is a foundation of the Internet of Things
- Open standard to meeting challenging requirements
- Promising technology to enable IP on many billions of smart objects
- ery compact code
- Supports wide range of media and devices
- cisco Implementation
- Passed execute commit, planned for IOS 15.2PI16
- In roadmap for SGBU nextgen routers
- Standardisation Status (Dec 2010)
- Passed WG and IETF last call
- Adopted by several alliances: Zigbee/IP, Wavenis, IEEE P1901.2 (Power line comms)

conclusion

isco and/or its affiliates. All rights reserved.

onclusion

- mart Objects have several major applications
- Smart Grid, Green, Industrial, Connected building/homes, Smart Cities
- There is a lot of momentum around using IP
- lajor progress in several key areas
- IP-based technologies: 6Lowpan, RPL and now CoRE
- **IPSO** alliance
- Adoption of IP by several other SDOs/alliance: Zigbee/IP for SE2.0, Bacnet,
- nternet of Things is coming
- Current Internet = Some things (computers and hosts)
- Next Internet = Everything!

ecommended reading

NTERCONNECTING GMART OBJECTS /ITH IP

- Covers the trends in Smart Objects
- RPL protocol
- Detailed application scenarios
- Written by
 - JP Vasseur (Cisco DE)

Adam Dunkels (Inventor of Contiki O/S, uIPv6)

