Network Infrastructure Security

APRICOT 2005 Workshop February 18-20, 2005 Merike Kaeo merike@doubleshotsecurity.com

Agenda (Day 1)

- Threat Models
 - What Are We Protecting Against?
- Securing The Device
 - Physical and Logical Connections
 - User Authentication / Authorization
 - Access Control
 - Logging Information Integrity
 - System Image / Configuration Integrity
- LAB
 - Securing The Infrastructure Device
 - SSH on LINUX and to the Router

Agenda (Day 2)

Securing Data Traffic

- Packet Filters
- Encryption (IPsec vs SSL)
- Securing Routing Protocols
 - Route Authentication (MD5)
 - Filtering Policies
 - Flap Damping
 - Prefix Limits
- o LAB

Agenda (Day 3)

Auditing Tools

- Sniffers and Traffic Analyzers
- Vulnerability Assessment (Nessus, NMAP)
- Logging Information
 - What To Log
 - Storing Logs
- Mitigating DoS Attacks
 - Blackhole /Sinkhole Routing
 - Rate Limiting

• LAB

• • What Are Security Goals?

- Controlling Data / Network Access
- Preventing Intrusions
- Responding to Incidences
- Ensuring Network Availability
- Protecting information in Transit

First Step.....Security Policy

• What are you trying to protect?

- What data is confidential?
- What resources are precious?
- What are you trying to protect against?
 - Unauthorized access to confidential data?
 - Malicious attacks on network resources?
- How can you protect your site?

Security Services We Need To Consider

- User Authentication
- User Authorization
- Data Origin Authentication
- Access Control
- Data Integrity
- Data Confidentiality
- Auditing / Logging
- DoS Mitigation

Varying Degrees of Robustness for Security Elements

Will I Go Bankrupt ?

- Spend More Money
- Spend More Time

Is It An Embarrassment ? NEED TO DO A RISK ANALYSIS !

www.doubleshotsecurity.com

APRICOT 2005

Risk Mitigation vs Cost of Security

Risk mitigation: the process of selecting appropriate controls to reduce risk to an acceptable level.

The *level of acceptable risk* is determined by comparing the risk of security hole exposure to the cost of implementing and enforcing the security policy.

Assess the cost of certain losses and do not spend more to protect something than it is actually worth.

www.doubleshotsecurity.com

• The Security Practices Should Include.....

- Physical security controls
 - Media
 - Equipment location
 - Environmental safeguards
- Logical security controls
 - Subnet boundaries
 - Routing boundaries
 - Logical access control (preventative / detective)
- System and data integrity
 - Firewalls
 - Network services
- Data confidentiality

The Security Practices Should Include....

- Mechanisms to verify and monitor security controls
 - Accounting
 - Management
 - Intrusion detection
- Policies and procedures for staff that is responsible for the corporate network
 - Secure backups
 - Equipment certification
 - Use of Portable Tools
 - Audit Trails
 - Incident Handling
- Appropriate security awareness training for users of the corporate network

Definitions (rfc 2828)

Threat: A threat is a potential for a security violation, which exists when there is a circumstance, capability, action, or event that could breach security and cause harm.

Threat Action (attack): an assault on system security that derives from an intelligent act that is a deliberate attempt to evade security services and violate the security policy of a system

Threat Consequence: The threat consequences are the security violations which results from a threat action, i.e. an attack.

Network Attack Sources

• Passive vs Active

- Eavesdropping
- Scanning by injecting traffic
- On-Path vs Off-Path
- Insider vs Outsider
 - Trusted/authorized individual causing security compromise ?

Deliberate vs Unintentional

 Unintentional causes same problems as deliberate attack

www.doubleshotsecurity.com

Threat Consequences

• (Unauthorized) Disclosure

 A circumstance or event whereby an entity gains access to data for which the entity is not authorized.

• Deception

• A circumstance or event that may result in an authorized entity receiving false data and believing it to be true.

• Disruption

• A circumstance or event that interrupts or prevents the correct operation of system services and functions.

• Usurpation

• A circumstance or event that results in control of system services or functions by an unauthorized entity.

Disruption Often Caused by DoS and DDoS Attacks

- TCP SYN
- TCP ACK
- UDP, ICMP, TCP floods
- Fragmented Packets
- IGMP flood
- Spoofed and un-spoofed

	4 8	3 1	16 3		
Source TCP Port Number			Destination TCP Port Number		
Sequence Number					
Acknowledgment Number					
Offset	Reserved	U A P R S F R C S S Y I G K H T N N	Window Size		
TCP Checksum Urgent I				Pointer	
Options (if any)				Padding	
DATA					

www.doubleshotsecurity.com

DDoS Is A Huge Problem

• Distributed and/or coordinated attacks

- Increasing rate and sophistication
- Infrastructure protection
 - Coordinated attack against infrastructure
 - Attacks against multiple infrastructure components
- Overwhelming amounts of data
 - Huge effort required to analyze
 - Lots of uninteresting events

What If Router Becomes Attack Target?

It allows an attacker to:

- Disable the router & network...
- Compromise other routers...
- Bypass firewalls, IDS systems, etc...
- Monitor and record all outgoing an incoming traffic...
- Redirect whatever traffic they desire...

Router CPU Vulnerabilities

CPU Overload

- Attacks on applications on the Internet have affected router CPU performance leading to some BGP instability
- 100,000+ hosts infected with most hosts attacking routers with forged-source packets
- Small packet processing is taxing on many routers...even high-end
- Filtering useful but has CPU hit

Securing The Device

- Miscreants have a far easier time gaining access to devices than you think.
- Ensure that the basic security capabilities have been configured.

Fundamental Device Protection Security Practices

- Secure logical access to routers with passwords and timeouts
- Never leave passwords in clear-text
- Authenticate individual users
- Restrict logical access to specified trusted hosts
- Allow remote vty access only through ssh
- Disable device access methods that are not used
- Protect SNMP if used
- Shut down unused interfaces
- Shut down unneeded services
- Ensure accurate timestamps for all logging
- Create appropriate banners
- Test device integrity on a regular basis

The native passwords can be **NOT SECURE** ! logging in with the enabled password

www.doubleshotsecurity.com

Secure Access to Routers with Passwords and Timeouts

The native passwords can be **MORE SECURE**! logging in with the enabled password

www.doubleshotsecurity.com

Never Leave Passwords in Clear-Text

- password command
 - Will encrypt all passwords on the Cisco IOS with Cisco-defined encryption type "7"
 - Use "command password 7 <password>" for cut/paste operations
 - Cisco proprietary encryption method
- secret command
 - Uses MD5 to produce a one-way hash
 - Cannot be decrypted
 - Use "command secret 5 <password>" to cut/paste another "enable secret" password

Authenticate Individual Users

```
service password-encryption
enable secret 5 $1$mgfc$ISYSLeC6ookRSV7sI1vXR.
enable password 7 075F701C1E0F0C0B
!
```

username merike secret 5 \$6\$mffc\$lmnGLeC67okLOMps username staff secret 5 \$6\$ytjc\$lchdLeC6o6klmR7s

```
line con 0
exec -timeout 1 30
login local
!
line vty 0 4
exec-timeout 5 0
login local
transport input ssh
```

www.doubleshotsecurity.com

Restrict Access To Trusted Hosts

• Use filters to specifically permit hosts to access an infrastructure device

• Example

- Access-list 103 permit tcp host 192.168.200.7 192.168.1.0 0.0.0.255 eq 22 log-input
- Access-list 103 permit tcp host 192.168.200.8 192.168.1.0 0.0.0.255 eq 22 log-input
- Access-list 103 permit tcp host 192.168.100.6 192.168.1.0 0.0.0.255 eq 23 log-input
- Access-list 103 deny ip any any log-input
- !
- Line vty 0 4
- Access-class 103 in
- Transport input ssh telnet

Telnet is Insecure

- Avoid using Telnet if possible
- Telnet sends username and password information across the wire in plain text format.
- Do not use telnet to gain access to any of your boxes (router-to-router could be exception for troubleshooting, but limit access in these instances)

Secure Shell (SSH)

- Username/password information is encrypted
- Flexible authentication methods
 - One-time password
 - Kerberos
 - Public key
- Allows Secure Tunneling
 - TCP port forwarding
 - Forward remote ports to local ones
- Uses TCP port 22

SSH Support

- Two flavors of ssh, ssh1 and ssh2
- Use ssh2 if possible
- In general the client connecting to your ssh server will either "speak" ssh1 or ssh2
- OpenSSH for UNIX
 - www.openssh.org
 - Supports both ssh1 and ssh2
- Putty client for Windows
 - www.chiark.greenend.org.uk/~sgtatham/putty/

Secure SNMP Access

- SNMP is primary source of intelligence on a target network!
- Block SNMP from the outside
 - access-list 101 deny udp any any eq snmp
- If the router has SNMP, protect it!
 - snmp-server community fO0bAr RO 1
 - access-list 1 permit 127.1.3.5
- Explicitly direct SNMP traffic to an authorized management station.
 - snmp-server host fO0bAr 127.1.3.5

Secure Logging Infrastructure

- Log enough information to be useful but not overwhelming.
- Create backup plan for keeping track of logging information should the syslog server be unavailable
- Remove private information from logs
- How accurate are your timestamps?

www.doubleshotsecurity.com

APRICOT 2005

Banner....what's wrong?

banner login ^C Martini

2.5 ounces vodka1/5 ounce dry vermouth

Fill mixing glass with ice, add vermouth and vodka, and stir to chill. Strain into a Martini glass and garnish with an olive or lemon twist.

RELAX....INDULGE.....Get Off My Router!! ^C

Better Device Banner

!!!! WARNING !!!!

You have accessed a restricted device.

All access is being logged and any unauthorized access will be prosecuted to the full extent of the law.

System Image and Configuration File Security

- Careful of sending configurations where people can snoop the wire
 - CRC or MD5 validation
 - Sanitize configuration files
- SCP should be used to copy files
 - TFTP and FTP should be avoided
- Use tools like 'rancid' to periodically check against modified config files

Bare Minimum Device Security

- Secure logical access to routers with passwords and timeouts
- Never leave passwords in clear-text
- Authenticate individual users
- Restrict logical access to specified trusted hosts
- Allow remote vty access only through ssh
- Disable device access methods that are not used
- Shut down unused interfaces
- Shut down unneeded services
- Ensure accurate timestamps for all logging
- Create appropriate banners
- Test device integrity on a regular basis

Router Device Security SSH on LINUX