Delivering High Availability Routed Networks

Matt Kolon
matt@juniper.net
APRICOT 2005 - Kyoto
Effects of Network Outage

- **Immediate Impact**
 - Loss of Revenue
 - Repair Costs
 - SLA penalties
 - Dissatisfied customers
 - Project delays
 - Management distraction

- **Long Term Impact**
 - Damage to corporate brand
 - Customer churn, market share
 - Competition
 - Lawsuits
 - Lack of internal confidence
Business Case for High Availability

- Cost

- Downtime Cost

- Availability Cost

- Availability
Threats to Dependability

- Application Failures 40%
- Operations Errors 40%
- Network Outages 20%
- Process failures
- Misconfiguration
- DNS faults
- DHCP faults
- Platform failures
- Hardware/software
- Circuit failure

Source: Gartner Group, 1/01
HA Solution Architecture

IP Carrier-Class Availability Is a Culture, Not a Single Feature, Protocol or Product

Dependable Services

Dependable Networks

Dependable Platforms

Security

Performance

Hardware Software Process
Reliable Hardware

- **Hard Fault Tolerance**
 - Environmental sensors
 - Component redundancy
 - Redundant boot devices

- **Soft Fault Tolerance**
 - Extensive internal diagnostics
 - CRC-protected internal data paths
 - ECC SDRAM

- **MTTR Reduction**
 - Hot swappable components
 - Field replaceable components
A Logical Platform View

- Hardware modularity is fundamental
- Clean separation of routing and packet forwarding functions
- Different vendors have different names, but for example:
 - Routing Engine (RE)
 - Routing protocol and management functions
 - Packet Forwarding Engine (PFE)
 - Packet forwarding and processing
- Multiples of each module allow redundancy and failover
Simple RE Failover

- Protects against Single Node Hardware Failure
- Redundant Routing Engines run keepalive process
- Automatic failover to secondary
- Configuration synchronized between RE’s
- Configurable timer
- Routing Process restarts
- Requires PFE reset
Stateful Protocol Mirroring

- Protects against Single Node Hardware Failure
- Redundant Routing Engines Mirror each others state
- BGP & TCP
- Theoretically ISIS & OSPF
- Automatic failover to secondary
- Advocated by some vendors, claiming Carrier-Class IP
Stateful Protocol Mirroring

- Great Idea!
- Difficult to do without replicating errors as well as “good” state
- Potential for “bug mirroring”
- Much more challenging in a rich service environment than an IP-only core
Graceful RE Switchover

- Protects against Single Node Hardware Failure
- Primary (REP) and Secondary (RES) utilize keepalive process
 - Automatic failover to RES
 - Synchronized Configuration
- REP and RES share:
 - Forwarding info + PFE config
- REP failure does not reset PFE
 - No forwarding interruption
 - Only Management sessions lost
 - Alarms, SNMP traps on failover
Reliable Software

- **Hard Fault Tolerance**
 - Redundant REs
 - Different software versions

- **Soft Fault Tolerance**
 - Separate control and forwarding
 - Modular processes can be restarted independently
 - Processes protected in own memory space
 - Individual process watchdogs

- **MTTR Reduction**
 - Incremental software upgrades
 - Modularity to speed up testing
Software Reliability Principles

- **Loose coupling of modular components**
 - A single failing component will not crash the box
 - Localizes complexity
 - Creates conceptual boundaries to contain problems
 - Clean interfaces between system components (well-defined, efficient APIs)

- **Memory protection**
 - Processes cannot scribble on each others’ memory

- **Adding complexity will not improve reliability**
 - If base software is not expandable, maintainable, reliable, then adding additional layers won’t help
 - “Make it as simple as possible, but no simpler.”
 --Albert Einstein
In-Service Software Upgrades

- Leverages
 - Graceful RE Switchover
 - Graceful Restart Protocol Extensions
- Preserves forwarding
 - In any RE failure
- Delivers
 - In-service software upgrades
- Might also be enabled by stateful mirroring
In-Service Software Upgrades

- When Software is modular:
 - (JUNOS, for example)
 - “jinstall” is a complete software distribution
 - “jroute”
 - Routing protocols
 - “jkernel”
 - Operating system
 - “jpfe”
 - PFE software
Reliable Networks

- MPLS
 - Fast reroute
 - Secondary LSPs
- VRRP
- Convergence improvements
- Graceful Restart
- Link Redundancy
- Multi-Homing
- SONET APS/ SDH MSP

Protection and Recovery from failures
Link Redundancy

- **Reliable Links**
 - Link failure does not affect forwarding
 - Load redistributed among other members

- **Parallel Link Technologies**
 - MLPPP – T1/E1 Link aggregation
 - Multi-Link Frame Relay
 - 802.3ad – Ethernet aggregation
 - SONET/SDH aggregation
SONET/SDH Protection Switching

- **SONET APS & SDH MSP**
 - Redundant routers share uplink

- **Rapid circuit failure recovery**
 - Used on router-to-ADM links
 - Layer 3 protocol convergence longer

- **Interoperable with standard ADM**

- **Working & protect circuits**
 - May reside on different routers
 - May reside on same router
Virtual Router Redundancy Protocol

- Redundant default gateways—VRRP (RFC 2338)

Multiple routers on the subnet negotiate who will be “Master” and own the Virtual Router IP Address.

Master sends periodic hellos to communicate alive state.

All other routers are backups. Backup priority is configurable.

Hosts are preconfigured with Virtual Router IP address as default for traffic exiting the LAN.
IP Dynamic Routing

- OSPF or IS-IS computes path
- If link or node fails, New path is computed
- Response times: Typically a few seconds
- Completion time: Typically a few minutes, but very dependant on topology
Faster Router Convergence

- Faster convergence improves Network Reliability

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Priority Flooding for Interested LSPs (ISIS / OSPF)</td>
<td>- Timer reduced from 100 to 20msec
- Faster propagation of major changes</td>
</tr>
<tr>
<td>Quick SPF Scheduling (ISIS / OSPF)</td>
<td>- Reduces time from 7 sec to 50 msec
- Speeds calculation of optimum path</td>
</tr>
<tr>
<td>Sub-second Hellos (ISIS)</td>
<td>- Lowest Hello Time possible for IS-IS, 333msec
- Faster Link Failure Detection</td>
</tr>
<tr>
<td>RIB and FIB Enhancements (BGP)</td>
<td>- Indirect Next Hop implies faster convergence</td>
</tr>
</tbody>
</table>
Routing Protocol Graceful Restart

- Protocol extensions distinguish between control, data plane failure
- Protects against Routing Protocol Module failure
- Failure invisible to everyone but peers
- Stepping stone for non-stop forwarding

Routing protocol enhancement
- Maintain forwarding under duress
- Restart neighbor coms gracefully
- BGP, IS-IS, OSPF, MPLS signaling

Core

Edge

OC-n/ STM-n
Ethernet
DS3/ E3
NxE1/ E1
T1/ E1
DS0
Graceful Restart - How?

Separate control and data planes

If router's control plane fails, data plane can keep forwarding packets

Neighbors hide failure from all others routers in the network

Other routers are never made aware of failure

When router recovers, neighbors sync up without disturbing forwarding.
Graceful Restart Protocol Details

Purpose - Continue forwarding (PFE) during a restart of routing (RE)

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Changes</th>
<th>IETF</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP</td>
<td>Protocol extensions Per-peer configuration Various timers with configurable defaults</td>
<td>Graceful Restart Mechanism for BGP draft-ietf-idr-restart-08.txt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSPF</td>
<td>Protocol extensions New opaque-LSA type 9, “Grace-LSA”</td>
<td>Hitless OSPF Restart rfc3623</td>
</tr>
<tr>
<td>IS-IS</td>
<td>Protocol extensions 3 new timers New “re-start” option (TLV) in IIH PDU</td>
<td>Restart Signaling for ISIS draft-shand-isis-restart-04.txt</td>
</tr>
<tr>
<td>MPLS</td>
<td>Protocol Extensions Uses signaling as described in “Graceful Restart Mechanism for BGP</td>
<td>Graceful Restart Mechanism for BGP with MPLS draft-ietf-mpls-bgp-mpls-restart-03.txt</td>
</tr>
<tr>
<td>RSVP</td>
<td>Protocol Extensions Extend rfc 3473 Recovery ERO</td>
<td>Graceful Restart Extensions draft-rahman-rsvp-restart-extensions-00.txt</td>
</tr>
</tbody>
</table>
MPLS-based mechanisms

- Path protection (aka Secondary LSP)
- Local 1:1 (aka LSP/Detour Protection Fast Reroute)
 - Protects against both link failure and node failures
- Local 1:N (aka Facility-based Fast Reroute)
 - Link Protection Fast Reroute (Protects only against link failure)
 - Node Protection (Protects against both link failure and node forwarding plane failure)
Secondary LSPs

- An LSP may have multiple paths
- Primary path is the preferred path to set up and use
- Secondary paths are alternatives, to be used when the primary fails
 - Usually node/link disjoined from primary
 - The level of overlap between the primary and the secondary could be controlled
- Secondary path may result in wasting resources
 - Resources reserved for secondary are reserved all the time, yet used only when the primary fails
Secondary LSPs

- Primary & secondary LSPs established a priori
- If primary fails
 - Signal to ingress router to use secondary LSP
- Faster response than routing protocol, requires wide area signaling
MPLS Fast Reroute

- Increasing demand for "APS/MSP-like" redundancy
 - MPLS resilience to link/node failures
 - Control-plane protection required
 - Frequent code upgrades = instability
 - Cost of APS/MSP protection

- Solution: MPLS Fast-reroute
 - RSVP Extensions define Fast Reroute
Fast Reroute

- Head-end of LSP enables fast reroute
- When signaled, each intermediate node calculates its own path to the tail-end
 - Uses CSPF and reservation
 - Doesn’t duplicate reservations on a single link (but does duplicate on the network as whole)
- If any node sees the interface over which the primary LSP is routed go down, that node can instantly switch to backup
- Head-end discovers later and can reroute in a way that is more globally optimal
Complexity Comparison

- **Secondary LSPs**
 - Signaled by ingress LSR only, protects path
 - + additional constraints can be applied
 - + tries to stay away from primary path nodes and links
 - - additional management and planning
 - - switch is done at the ingress router only
 - + more scalable

- **FRR**
 - Each LSR along the path protects configured links
 - - limited path constraints
 - + no additional path definitions configuration
Local 1:1 Protection Operation

- Single user command at head end to enable Fast Reroute.
- Fast reroute is signaled to each LSR in the path.
- Each LSR computes and sets up a detour path that avoids the next link and next LSR.
- Each LSR along the path uses the same route constraints used by head-end LSR.
Local 1:1 Protection Operation: Link Failure

- LSR2 detects that an interface in an LSP has gone down and reroutes via standby detour
 - Recovery time is limited by the time to detect the failure
 - Comparable to SONET APS
 - Packet loss is minimized to the unlucky few that were transiting at the time of failure
Local 1:1 Protection Operation: Node Failure

- LSR2 detects that neighbor’s (LSR3) forwarding plane has gone down and reroutes via standby detour
 - Recovery time is limited by the time to detect the failure
 - Packet loss is minimized to the unlucky few that were transiting at the time of failure
Each LSR detects that an interface has gone down and reroutes all the Protected LSPs traversing the interface via the Bypass LSP

- Recovery time is limited by the time to detect the failure
- Packet loss is minimized to the unlucky few that were transiting at the time of failure
Each LSR detects that an interface has gone down and reroutes all the Protected LSPs traversing the interface via the Bypass LSP.

- **Recovery time is limited by the time to detect the failure.**
- **Packet loss is minimized to the unlucky few that were transiting at the time of failure.**
Which one to use?

- **1:1 Detour Backup**
 - The number of LSPs to be protected is small
 - Finer control (at the granularity of individual LSPs) with respect to LSP priority, bandwidth, link coloring for detour/bypass LSPs is important
 - Simpler configuration is desired
 - Suitable if LSP’s have divergent paths

- **1:n Facility Backup**
 - Ability to protect all the LSP’s on a link with a single LSP with stacking
MPLS Fast Reroute vs IP

A detects failure, runs SPF

IP routing to B

New IP routing to B (transient forwarding loop)

MPLS detour to B (no loops)

C has not yet run its SPF
Extending to Legacy Networks

- **MPLS OAM features**
 - Use BFD and FRR, along with other mechanisms
 - Provides notification to external networks if LSP fails
BFD: Forwarding Liveliness (Bidirectional Forwarding Detection)

- In IP, historically a function of the routing protocol
 - Because formerly, routing = forwarding
 - Fault resolution in perhaps tens of seconds
 - This is too slow for anything but best-effort IP
 - Sometimes there is no routing protocol!
Goals of BFD

- **Faster** convergence of routing protocols, particularly on shared media (Ethernet)
- **Semantic separation** of forwarding plane connectivity and control plane connectivity
- Detection of forwarding plane-to-forwarding plane connectivity (including links, interfaces, tunnels etc.)
- A single mechanism that is independent of media, routing protocol, and data protocol
- Requiring no changes to existing protocols
BFD Protocol Overview

- At its heart, Yet Another Hello Protocol
- Packets sent at intervals; neighbor failure detected when packets stop arriving
- Intended to be implemented in the forwarding plane where possible
- Context defined by encapsulating protocol
- Always unicast, even on shared media
BFD Applications

- IGP liveliness detection
- Tunnel liveliness detection
 - MPLS LSPs
 - IP-in-IP/GRE tunnels
- Edge network availability
- Liveness of static routes
- Host reachability (e.g. media gateways)
- Switched Ethernet integrity
BFD for IGP Liveliness Detection

- One of the first motivations for BFD
- Faster convergence particularly on shared media
 - Sub-second IGP adjacency failure detection
- IGP hellos can be set to higher intervals
 - Can improve IGP adjacency scaling
BFD for Edge Availability
Voice over IP

- **Primary path**: Static/EBGP + BFD
- **Backup path takes over**
- **Link/switch failure**: PE2 switches to a backup route through PE2 to reach MGW1

BFD session failure

MPLS LSP + Fast Reroute

IBGP route to MGW1

MGW1 → PE1 → PE2

MGW2 → PE3 → PE4

MGW1
Summary

Dependability:
- Is a culture
- Has many layers
- Is business critical
- Must be designed into networks from the start

Luckily:
- Vendors are providing tools for reliability
- Many architectural options from which to choose
- Also many protocols and mechanisms
Thank you!