InternetCAR

~Internet Connected Automobile Researches~

Keisuke UEHARA, Ph.D

KEIO University/WIDE Project/Internet ITS Consortium

Background and Motivation

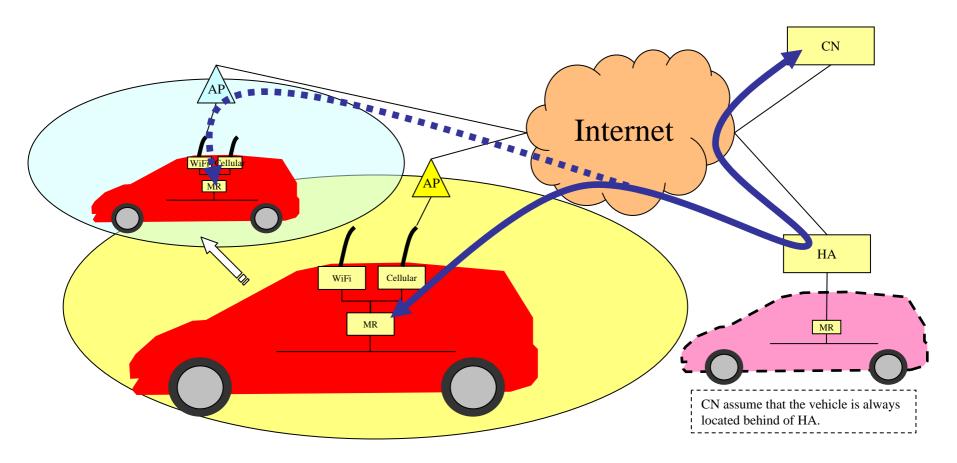
- "Give and Take" basis helps society.
 - → Automobile has more than one hundred sensors.
 - If we can collect these data, useful information can be provided.
 - This kind of application is called as Probe Car or Floating Car Data
- Frontline base is necessary in emergency situation.
 - Automobile can move, has battery, can bring heavy/large equipment.
 - → "Communication" is most important capability.
 - Internet connectivity can be used for map/music distribution, controlling taxi/bus, web browsing, E-mail and so on.

Key Issues

Internet Mobility

- Connect all on-board equipments
- Across radio coverage seamlessly
- Use of heterogeneous communication media to connect automobile to the Internet anytime/anywhere.

Platform of Internet CAR

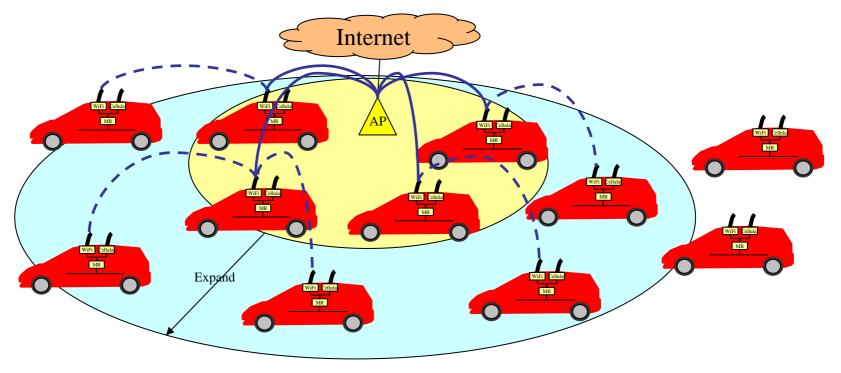

- Data dictionary of automobile have to be standardized to exchange each other.
- Platform of geographical information on the Internet is necessary to develop real space networking.

Connect IVN to the Internet: NEMO

<u>Proposition:</u> A vehicle uses any communication media seamlessly.

<u>Solution:</u> *iCAR introduces NEMO to connect IVN to the Internet.*

- Movement: CoA, which vehicle want to use, is changed.
- When a vehicle moves, it report it to its HA.
- Packet will be delivered via a HA.

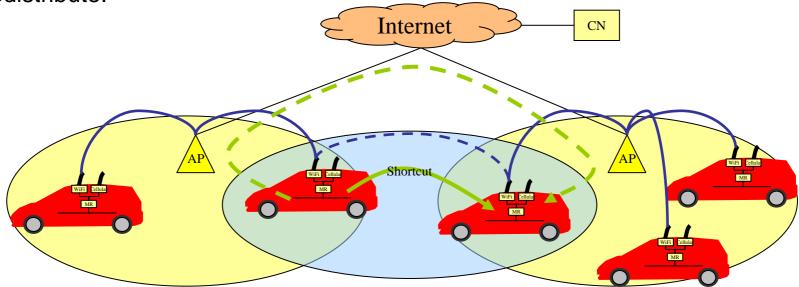


Expands radio coverage: L2.5 MANET

Proposition: Vehicles prefer to connect via a wideband medium.

<u>Solution:</u> *iCAR introduces L2.5 MANET to expand BB media coverage.*

- Global MANET segment is constructed with AP as a center.
- Local MANET segment is constructed with a vehicle as a center.
- Local MANET segment is twice bigger than Global MANET segment to follow general IPv6 manner.
- Reactive MANET algorithm can be applied to L2.5 MANET.
- MANET segment acts as "subnetwork of Internet".

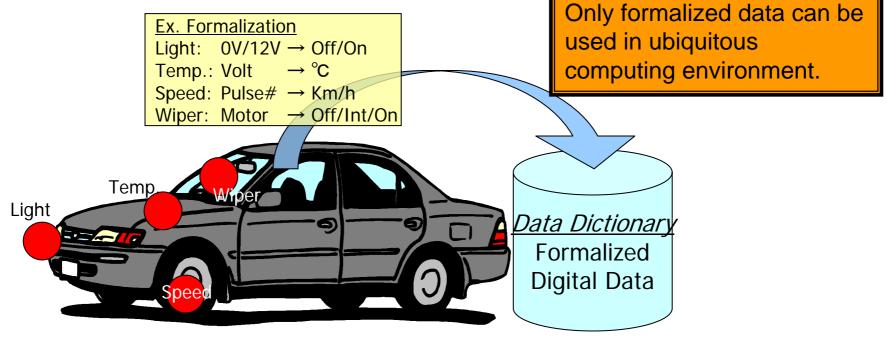

Infrastructureless communication Routing optimization: L3 MANET

<u>Proposition:</u> Vehicles communicate using shortest path.

Vehicles connect each other without any infrastructure.

Solution: *iCAR introduces L3 MANET to establish a shortcut routing path.*

- By default, a vehicle supports NEMO.
- When two vehicles know routes which can reach each other, it can be "shortcut" paths.
- Any dynamic routing protocol can be used to make shortcuts. But MANET protocols work well than others due to dynamicity.
- Proactive MANET algorithm can be applied well.
- Bidirectional path is necessary.
- MANET have to have hop limitation. In addition, route information must not redistribute.

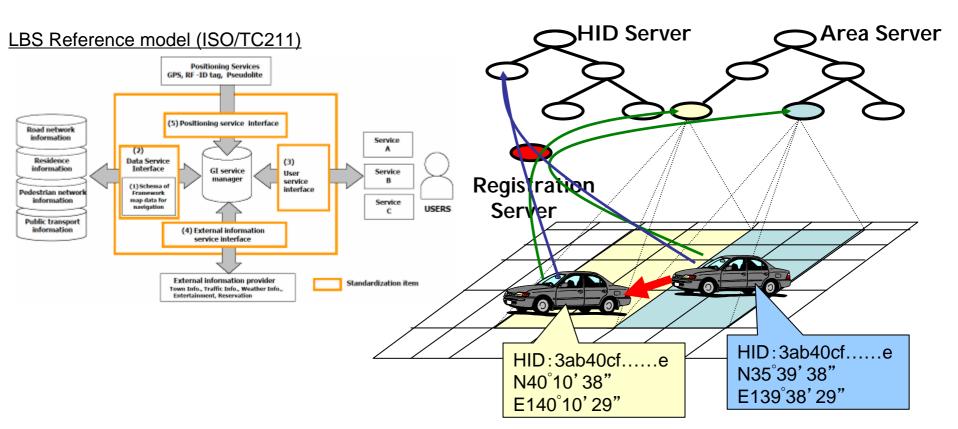

Exchange data and information: Data dictionary

Proposition: Vehicles exchange their data and information each other

even if types of vehicle or manufacturer is different.

<u>Solution:</u> *iCAR introduces data dictionary model.*

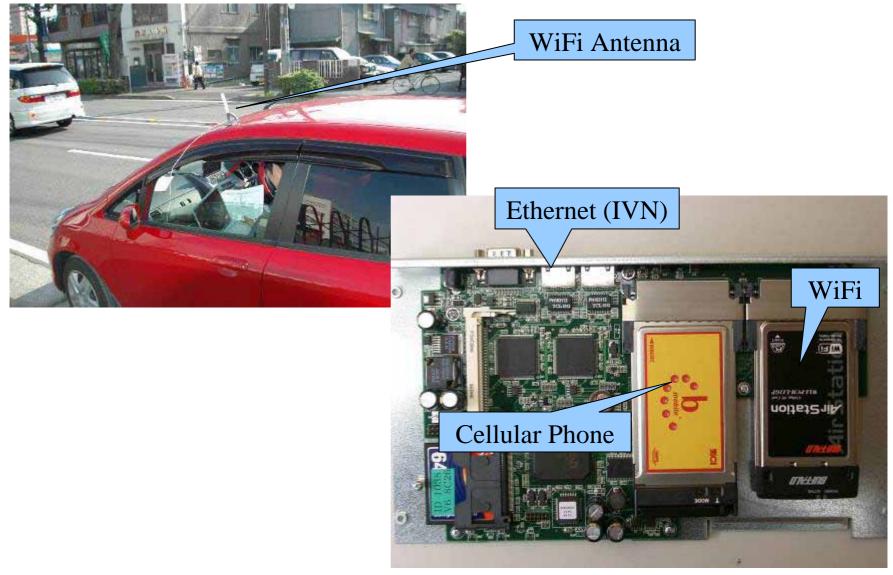
- Each vehicle has its particular dataset and element types.
- Physical value can be defined in theory.
- Each data can be used for any applications.
- Extensible format is important to long use.
- Any protocol can be used to exchange data.



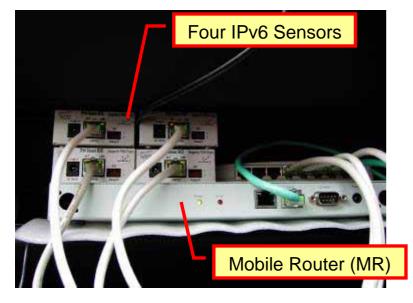
Platform for Real space networking: GLI, LBS platform

Proposition: Many applications in real world is based on the location.

<u>Solution:</u> *Platform for location based on Internet is introduced.*


- Many kind of representation of location: Address, Lat/Lng, 10m left away...
- There are many information to guess the location: timetable, seat plan...
- There are two types of operation: Area \rightarrow Node ID, Node ID \rightarrow Location.

History of InternetCAR Project related activities


	Internet CAR(WIDE)			IPCar(JSK)			Internet ITS		
FY	1996	1997	1998	1999	2000	2001	2001	2002	2003
Characteri stic	First testing	Introducing Mobile IPv4	Development of On-board system	Possibility check of Probe Car system	Feasibility study of Probe Car system	Improving accuracy of Probe Car system	Internet ITS	Joint work of more than hundred organization	Interoperabili ty check
# of Cars	1	7	10	10	270	270	1640	1490	1490+30
Location	Fujisawa	Fujisawa	Fujisawa, Nara, Ishikawa	Kouhoku	Yokohama	Yokohama	Nagoya, Kawasaki	Nagoya	Nagoya, Yokohama
Type of Car	• Test Car	• Passenger car	• Passenger car	• Test car	 Taxi Bus Commercial car Truck Garbage car 	• Taxi • Bus	• Taxi • Passenger car	• Taxi	• Taxi • Bus
On-board system	• PC	• Note PC	• sic2000	 Proprietary system 	 Proprietary system 	 Proprietary system 	 Proprietary system 	 Proprietary system 	 Proprietary system MR+IPv6S ensors
Retrieved Information	•Location •Speed •Wipre •Light	•Location •Speed •Wiper	•Location •Speed •Wiper	•Location •Speed •Wiper	•Location •Speed •Wiper	•Location •Speed •Winkers •Side break	 Location Speed Wiper Hired/Vacant 	•Location •Speed	 Location Speed Camera Temp. Humidity Acceleration Winker
Communica tion Media	•PDC-P	•PDC-P •PHS •Wireless LAN	•PDC-P •Wireless LAN	•PDC-P	•PDC-P	•PDC-P	PDC-P, cdma1x, PHS, PHS-DATA WiFi, DSRC		•PDC-P •WiFi •PHS-DATA

Testing Environment

Mar 03 2004

Testing Environment

MR and IPv6 Sensor

IPv6 GPS

IPv6 based on-bard equipment

Vehicle information can be retrieved using SNMP/IPv6

CALM ~Communication, Air Interface for Long and Medium Range~

What is "CALM"?

- □ ISO/TC204/WG16 is working to define New ITS Networking architecture.
- □ CALM Supports...

continuous communications

both of ITS services and Internet services

Support master/slave and peer-peer modes

Support user transparent networking and handover spanning multiple media, media providers and beacons

History

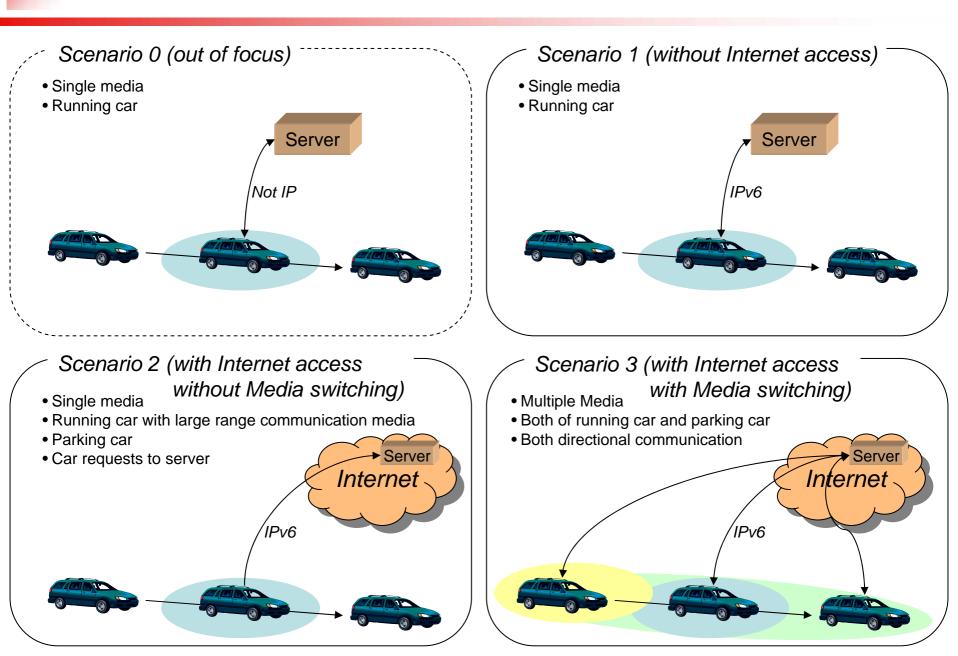
Apr. 2001

Proposed PWI with other CALM Medias

- Start to consider the requirements
- **G** Feb. 2003

Convener was changed from US to Japan

Apr. 2004


NP ballot. Passed.

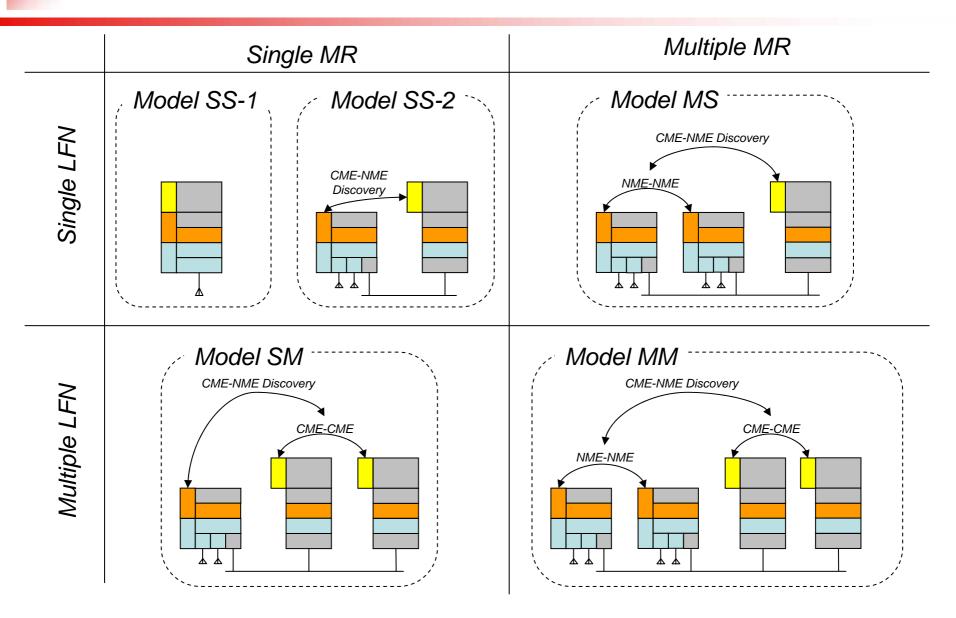
Oct. 2004

First version of Working Draft was published

Call for comments

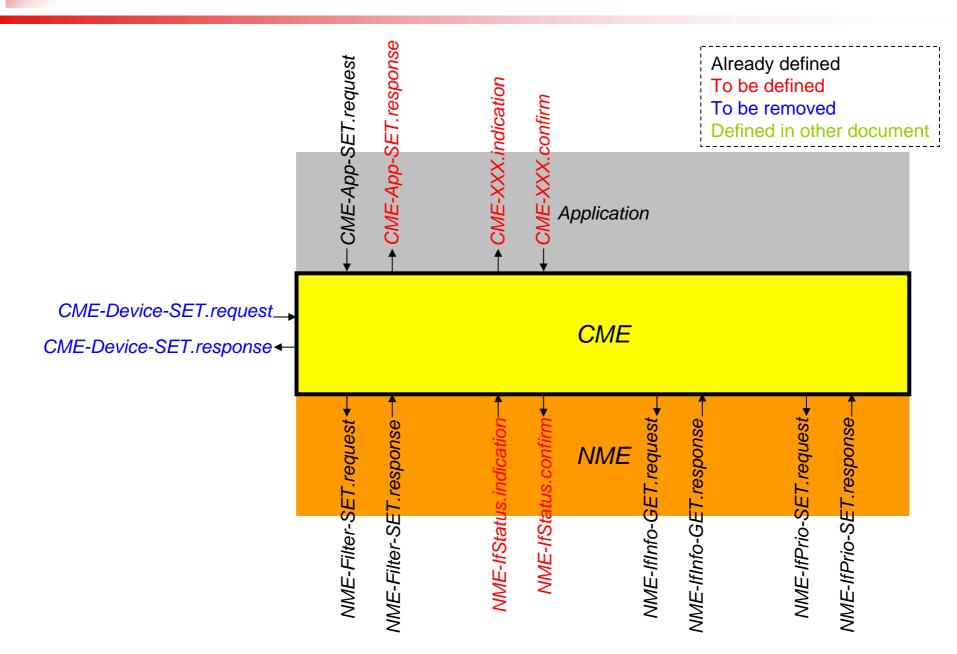
CALM Scenarios

CALM Architecture and SAPs of Network part

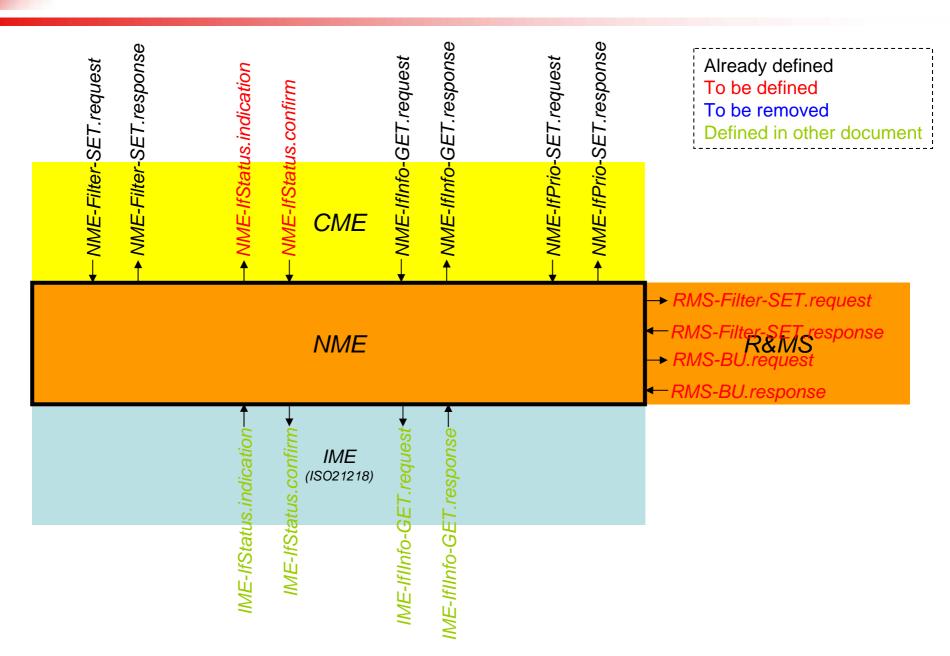

- CME: CALM Management Entity
 - NEM: Network Management Entity
- IME: Interface Management Entity

- 2G: 2nd Generation Cellular Phone
- 3G: 3rd Generation Cellular Phone
- IR: Infrared
- M5: 5GHz Band ITS Media
- MM: Microwave Media
- PPM: Point to Point Millimeter wave
- WBB: Wireless Broadband
- IVN: In-Vehicle Network

CME (ISO212	SA 10)	Application without Internet Access			Application With Internet Access Without Media switching			Application With Internet Access With Media switching			
NME (ISO212		TCP/UDP SAP IPv6 Routing & Media switching (ISO21210)									
SAP		Lower SAP (ISO21218)									
IME (ISO2121		2G (ISO21212)	3G (ISO21213)	IR (ISO21214)	M5 (ISO21215)	MM (ISO21216)	PPM (TBD)	WBB (TBD)	IVN (TBD)		


SAP defined in ISO21210 SAP defined outside of ISO21210

Possible CALM physical configuration



"CME-NME discovery", "NME-NME", "CME-CME" will be defined in next step.

CME – CALM Management Entity

NME – Network Management Entity

Conclusion

IPv6 makes you happy with various applications.

- Safety / Smooth traffic / Low pollution / Entertainment
- Key technologies for ITS PLATFORM are already available.
 - Network technology
 - Application platform
 - CALM Communication Air interface, Long and Medium Range
 - Multiple wireless communication media
 - Seamless media switching based on IPv6
 - Multiple application
- We should support this idea, if...
 - we can provide active safety (Driving assistant)
 - we can reduce traffic jam (Pollution, Safety)
 - We know that these technologies helps above. We can do something already.