TONY BATES
VICE PRESIDENT/GENERAL MANAGER
ROUTING TECHNOLOGY GROUP

CISCO IP NGN

APRICOT 2005 – February 24th

SERVICE PROVIDER DRIVERS

IP NGN OVERVIEW

APPLICATION CONVERGENCE

SERVICE CONVERGENCE

NETWORK CONVERGENCE

INNOVATION – CRS1

SPs are Driving Towards...

Cisco.com

Cisco Service Provider Vision

Cisco.com

CONNECTING CUSTOMERS WITH SERVICES, SERVICES WITH NETWORKS, AND NETWORKS WITH EACH OTHER

IP NEXT GENERATION NETWORK

VPNs

INTERNET

CONTENT

VOICE & VIDEO

MOBILITY

TRANSPORT

Characteristics of an Ideal Network Fusing the Best of Today's Networks and More

Cisco.com

Layers of Convergence in IP NGN

Cisco.com

APPLICATION CONVERGENCE

Integration of New Innovative IP D/V/V Services over Broadband Increase Revenue

SERVICE CONVERGENCE

Service Continuity and Creation Customer Loyalty and Stickiness

NETWORK CONVERGENCE

Eliminate Layers in the Network Reduce
OPEX / CAPEX

Cisco IP NGN Architecture Achieving a Whole Greater Than the Sum of the Parts

Cisco.com

Application Convergence

Cisco.com

Innovation at the Application Layer

Cisco.com

Presence-Based Communication

TV / Web Integration Video Telephony

Push-to-Talk

Video-on-Demand

Video-Based Security Multi-Player Gaming

Mobile Enterprise

AT WORK, AT HOME, ON THE ROAD

Creating a Multitude of New Service Opportunities... Example: Residential Broadband Services

Cisco.com

Integrated Networks, Content and Entertainment Systems

Service Convergence

Cisco.com

Service Exchange Framework

Multimedia Service Control for Wireline/Wireless Convergence

Cisco.com

IDENTITY MANAGEMENT

User / Device ID
Location / Presence
Service Registration?
Audit / Logging
Assured Authentication

POLICY MANAGEMENT

Subscriber Policy
Application Policy
Per-Sub Service IAT?
Service Invocation

epivice Exchange

MOBILITY MANAGEMENT

Device Roaming
Service Mobility
User Mobility
HERE?

DYNAMIC SESSION MANAGEMENT

Call Control / Session Border Ctrl Rich-Media Control Bandwidth & Qos per Session Accounting / Billing

Introducing Cisco Service Control Engine

Cisco.com

 Programmable Exchange Point for Application and User-Level Control:

Stateful deep packet inspection
Wire-speed analysis and control
Subscriber and application-awareness
Integration with OSS and BSS systems

Delivering:

Granular usage analysis

Application-level traffic optimization

Service-level security

Tiered services and access control

Content charging

The Foundation: Network Convergence

IP NGN: Fundamental Requirements

Cisco.com

Scaling the PoP: Traditional Thinking

Cisco.com

Future

NGN: Not A Traditional Challenge

Cisco.com

Addressing Core Capacity only the first step

Slow provisioning, Difficult to scale Edge + Core simultaneously

Core vs. Edge Feature Discontinuity

Security, Software, QoS, Multicast

Large Number of routers remain

Difficult to manage, large # of intra-pop links

Resolving These Conflicts Requires a Clean-Slate System Design

It's All About Virtualization

Cisco.com

An Architecture that scales

 An Infrastructure that dynamically adapts

- A network that partitions and consolidates resources
- An environment which is flexible and manageable

The Vision: Multi-Instance Routing Nodes

Networks, Systems, Services

Multi-Instance Routing

Intelligent Networks

Cisco.com

Multi-Instance Routing Enables Convergence for the NGN

Cisco.com

CTM / CWI / XML Management

NGN Evolution

Cisco.com

Managed Networks (CTM / CWI / XML) **CTM / CWI / XML Management**

Cisco CRS-1 Product Family

Cisco.com

Continuous System Operation

True Telco grade OS

Separate control, data and management planes

Hitless in-service HW and SW upgrades

Simple, large scale management

Unprecedented Service Flexibility

Network convergence using logical routers Speed-to-Service elements Single system PoP design

Unparalleled System Longevity

Multi-chassis fabric scales to 92Tbps

Programmable 40G silicon packet processor for IPv4, IPv6 and MPLS

CRS-1 delivers stellar result in independent test

Cisco.com

"The industry said <u>Cisco Systems Inc.</u> (Nasdaq: <u>CSCO</u> - <u>message board</u>) couldn't build a carrier-class router. But Cisco didn't listen. They built it. We tested it. It really works. It can't be said enough: The CRS-1 is Cisco's most important product in years."

http://www.lightreading.com/document.asp?doc_id=64526&site=lightreading

- "...scales to meet the requirements of service providers far into the future"
- ".... software upgrades interrupted the traffic for only nanoseconds even on a fully loaded, live chassis"
- "..scaled to terabits-per-second of bandwidth, millions of routes, and tens of millions of IPv4 and IPv6 flows"
- "...throughput capabilities scale to multi-chassis configurations."

CRS-1 System OverviewTwo Main System Building Blocks

Cisco.com

FABRIC SHELVES

- Optical Backplane
- Redundant Fans/Power

FRONT:

24 Fabric cards
2 SC Cards

BACK:

Optical Fiber
Interconnect Panels

LINE CARD SHELVES

100m

- Mid-Plane Design
 - Redundant Fans/Power

FRONT:

8/16 Interface Slots
2 RP Slots
2 Controller slots

BACK:

8/16 LC Slots 8 Fabric Card Slots

Basic Router Architecture

Cisco.com

3 Main components: Line cards, Switching mechanism, Route Processor(s), Routing Applications

Cisco CRS-1 System

Distributed Architecture

Cisco.com

Flexible Forwarding Plane

- Up to 1152 40G Line Cards (Independent Forwarding)
- •Highly programmable SPP supporting 40G Line Rate performance
- Robust Queuing with8K per ingress/egress

Distributed Control Plane

- Multiple control processors (minimum of 144 Processors)
- Control SW distributed across all processors

Multistage Switch Fabric

1296x1296 non-blocking buffered fabric

1:N Redundancy

Service Intelligence with hi/lo priority uni-cast/multicast recognition

CRS-1 Packet Forwarding Engine – Silicon Packet Processor (SPP)

Cisco.com

- Parallel Processor Architecture
- IBMs Cu-11 ASIC process
- 188 Packet Processing Engines (PPE)
 Packets evenly distributed across PPEs
 Each PPE is a 32-bit RISC processor @250MHz
- 48,000 MIPS
- Fully Programmable
- Integrated with key-off-chip memories

512K entry TCAM for feature scale (ACLs/Netflow/Policing/etc)

2M entries for IPv4/IPv6/Multicast/MPLS lookup

1M 64Bit Stats counters

Router OS Evolution

Cisco.com

Control Plane Applications

Forwarding Plane Applications

Network Stack

System Forward Infrastructure

OS Scheduler

HA Infrastructure

- Monolithic Kernel
- Centralized Infrastructure
- Integrated Network stack
- Centralized applications

- Distributed Infrastructure
- Independent Network stack
- Distributed applications

IOS XR Software Architecture Overview

Picking The Correct OS To Meet CRS Software Requirements

Cisco.com

TRUE Microkernel (Mach, QNX)

MMU with full protection

Applications, drivers, and protocols are protected

Monolithic Kernel (BSD/Linux, NT)

MMU with partial protection

Applications are protected

High Availability Infrastructure

- Distribution improves fault tolerance and recovery time by localizing the database and system management functionality to each node
- Granular process restart allows for fast recovery from failures
- IOS XR is designed to optimize the switch over between redundant hardware elements (RP, SC, PS, Fan C.)

IOS XR is designed to route around fabric failure

Line cards are protected by link bundling, APS, IPS, ECMP etc.

