

OpenSSH Lab

OpenSSH is a free, open source implementation of the SSH (Secure SHell) protocols. It
replaces telnet , ftp, rlogin, rsh, and rcp with secure, encrypted network connectivity tools.
OpenSSH supports versions 1.3, 1.5, and 2 of the SSH protocol. Since OpenSSH version 2.9,
the default protocol is version 2, which uses RSA keys as the default.

OpenSSH server configuration:

1. Install the openssh-server and openssh rpm package included in the Red Hat Linux 7.3.
Please note that the openssh-server package depends on the openssh package.
OpenSSH packages also require the OpenSSL package (openssl) which installs several
important cryptographic libraries that help OpenSSH provide encrypted communications

2. OpenSSH daemon, sshd, uses the configuration file /etc/ssh/sshd_config

The default config file is sufficient. For customization, refer to sshd man page for config options.

3. Edit/view the sshd_config file

vi /etc/ssh/sshd_config

#Port 22 - Specifies the port number that sshd listens on
#Protocol 2,1 - Specifies the protocol versions sshd supports
#ListenAddress 0.0.0.0 - Specifies the local addresses sshd should listen on

#HostKey /etc/ssh/ssh_host_rsa_key - Specifies a file containing a private host key used by

SSH

#SyslogFacility AUTH - Gives the facility code that is used when sshd logs messages
#LogLevel INFO - Gives the verbosity level that is used when sshd logs messages

#LoginGraceTime 600 – time limit for a user to log in
#PermitRootLogin yes - Specifies whether root can login using ssh
#StrictModes yes - Specifies whether sshd should check file modes and ownership of the

user's files and home directory before accepting login
#PubkeyAuthentication yes - Specifies whether public key authentication is allowed
#PasswordAuthentication yes - Specifies whether password authentication is allowed
#PermitEmptyPasswords no - When password authentication is allowed, it specifies whether

the server allows login to accounts with empty password strings
#MaxStartups 10 - Specifies the maximum number of concurrent unauthenticated connections

to the sshd daemon
#KeepAlive yes - Specifies whether the system should send TCP keepalive messages to the

other side
#VerifyReverseMapping no - Specifies whether sshd should try to verify the remote host

name
Subsystem sftp /usr/libexec/openssh/sftp-server

Managing the sshd service

To start the service: #/ /sbin/service sshd start
To stop the service: # /sbin/service sshd stop
To restart the service: # /sbin/service sshd restart

To automatically run the service: # chkconfig sshd on

OpenSSH Client configuration:

To connect to an OpenSSH server from a client machine, you must have the openssh-clients and
openssh packages installed on the client machine.

System wide ssh client configuration: defaults for all system wide users

/etc/ssh_config

The configuration values can be changed in per -user configuration files or on the command line:

~/.ssh

Using the ssh command with password authentication:

1. Make sure you have the following enabled in /etc/sshd_config file on the ssh server

PasswordAuthentication yes - Specifies whether password authentication is allowed

2. To log in to a host named server.com, type the following:

$ ssh ritesh@server.com

The first time you ssh to a remote machine, you will see a message similar to the following:

The authenticity of host 'server.com (202.52.255.22)' can't be established.
RSA key fingerprint is 0f:41:6c:52:31:59:43:0f:dd:49:5f:3d:47:9d:b5:9e.
Are you sure you want to continue connecting (yes/no)? yes

Type yes to continue.
This will add the server to your list of known hosts as seen in the following message:

Warning: Permanently added 'server.com,202.52.255.22' (RSA) to the list of knownhosts.
ritesh@server.com's password:
Last login: Thu Jan 16 19:34:13 2003 from mc-gw.mos.com.np
[ritesh@server.com ritesh]$

3. known_hosts file in .ssh folder contains the remote servers’ host keys:

$ more known_hosts
server.com,202.52.255.22 ssh-rsa
AAAAB3NzaC1yc2EAAAABIwAAAIEA5IwKqHiqSeXj rX3dCpS1gXZo9GqJ0hkk+clf+WmABYbEH
6IGMyy2CeARtaR6QLpqB1SaGEFsn84dqA6kWLYfn4FuDVDc8KTyABLVEMOm6NnLZkHPKr3
Cb0RgivDYSYHlwgWuDi7XBvmoC44WA2EbM7eBy5h1kHrXZ5yPXq3rxI0=

Using the ssh command with public key authentication:

1. Make sure you have the following enabled in /etc/sshd_config file on the ssh server.

PubkeyAuthentication yes - specifies whether public key authentication is allowed

2. Key pair generation:

ssh-keygen - authentication key generation, management and conversion

To generate a RSA key pair to work with version 2 of the protocol:

$ ssh-keygen -t rsa

Generating public/private rsa key pair.
Enter file in which to save the key (/home/ritesh/.ssh/id_rsa):

Enter a passphrase different from your account password and confirm it by entering it again

Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/ritesh/.ssh/id_rsa.
Your public key has been saved in /home/ritesh/.ssh/id_rsa.pub.
The key fingerprint is:
e5:a1:ac:ce:8d:16:3a:b9:3a:e4:e9:06:9c:90:b6:da ritesh@myhost.com

The public key is written to ~/.ssh/id_rsa.pub.
The private key is written to ~/.ssh/id_rsa.
Never distribute your private key to anyone.
Change the permissions of your .ssh directory using the command chmod 755 ~/.ssh

$ ll .ssh/
total 8
-rw------- 1 ritesh ritesh 951 Jan 16 19:37 id_rsa
-rw-r--r-- 1 ritesh ritesh 236 Jan 16 19:37 id_rsa.pub

Copy the contents of ~/.ssh/id_rsa.pub to ~/.ssh/authorized_keys on the machine to which you
want to connect. If the file ~/.ssh/authorized_keys does not exist, you can copy the file
~/.ssh/id_rsa.pub to the file ~/.ssh/authorized_keys on the remote SSH server.

Securely copy your public key file to the remote ssh server:
$ scp ~/.ssh/id_rsa.pub ritesh@server.com:

Logon to the remote ssh server using password authentication, one more time:
$ ssh ritesh@server.com

Make .ssh dir in your home dir
$ mkdir .ssh

Copy the content of the public key file to authorized_keys file on the remote host:
$ cat id_rsa.pub >> ~/.ssh/authorized_keys

Disable Password Authentication and only allow Public Key Authentication as root user.
In /etc/ssh/sshd_config, uncomment and disable as follows:

PasswordAuthentication no

Restart sshd service to make it effective.

$ service sshd restart

Now, logon to the remote ssh server via public key authentication:

$ ssh ritesh@server.com

Enter passphrase for key '/home/ritesh/.ssh/id_rsa':
Last login: Thu Jan 16 19:40:11 2003 from myhost.com
[ritesh@server.com ritesh]$

To run a command on the remote host with ssh and exit:
$ ssh penguin.example.net ls /usr/share/doc

Using the scp command
The scp command is used to transfer files between machines over a secure, encrypted
connection

To transfer the local file shadowman to /home/username/shadowman on penguin.example.net:

$ scp shadowman username@penguin.example.net:/home/username

To transfer a remote file to the local system:

scp username@tohostname:/remotefile /newlocalfile

To transfer the contents of the directory /downloads to an existing directory called uploads on the
remote machine penguin.example.net:

scp /downloads/* username@penguin.example.net:/uploads/

Using the sftp command
The sftp command is used to open a secure, interactive FTP session via an encrypted channel.

sftp username@hostname.com
Once authenticated, you can use a set of commands similar to using FTP

Port forwarding

With SSH you can secure otherwise insecure TCP/IP protocols via port forwarding. When
using this technique, the SSH server becomes an encrypted conduit to the SSH client.

Port forwarding works by mapping a local port on the client to a remote port on the server.
SSH allows you to map any port from the server to any port on the client; the port numbers do
not need to mat ch for it to work.

To create a TCP/IP port forwarding channel which listens for connections on the localhost,
use the following command:

ssh -L local-port:remote-hostname:remote-port user@remote-hostname

Note: Setting up port forwarding to listen on ports below 1024 requires root access.

So if you want to check your email on a server called mail.domain.com using POP through an
encrypted SSH connection to the POP server, you can use the following command:

ssh -L 1100:mail.domain.com:110 mail.domain.com

Once the port forwarding channel is in place between the two machines, you can direct your
POP mail client to use port 1100 on localhost to check for new mail. Any requests sent to port
1100 on your system will be directed securely to the mail.domain.com server.

If mail.domain.com is not running an SSH server daemon, but you can log in via SSH to a
machine on the same network, you can still use SSH to secure the part of the POP
connection. However, a slightly different command is needed:

ssh -L 1100:mail.domain.com:110 ssh-server.domain.com

In this example, you are forwarding your POP request from port 1100 on your machine
through the SSH connection on port 22 to ssh-server.domain.com. Then, ssh-
server.domain.com connects to port 110 on mail.domain.com to allow you to check for new
mail. Using this technique, only the connection between your system and ssh-
server.domain.com is secure. Connection between ssh-server.domain.com and
mail.domain.com is insecure.

Port forwarding can also be used to get informat ion securely through network firewalls. If the
firewall is configured to allow SSH traffic via its standard port (22) but block access through

other ports, a connection between two hosts using the blocked ports is still possible by
redirecting their communication over an established SSH connection to the firewall.

Note: Using port forwarding to forward connections in this manner allows any user on the client
system to connect to the service to which you are forwarding connections. If the client system
becomes compromised, the attacker will also have access to forwarded services.

X11 Forwarding

Opening an X11 session over an established SSH connection is as easy as running an X
program on the local machine. When an X program is run from the secure shell prompt, the
SSH client and server create a new secure channel, and the X program data is sent over that
channel to your client machine transparently.

To enable X11 forwarding:

1. Make sure that the SSH software was compiled with X forwarding support. However, if X
security extensions are wanted, it is necessary to compile from source. When compiling,
make sure not to run ./configure with any X disabling options.

2. Ensure that xauth is in the path of the user running ./configure. Also, make sure that you
have the following line in your /etc/ssh/sshd_config file:

X11Forwarding yes

3. X11 forwarding also needs to be enabled in the client by setting the following line in the
ssh_config file:

ForwardX11 yes

4. Log into the remote system and type xclock &. This starts a X clock program that can be
used for testing the forwarding connection. If the X clock window is displayed properly,
you have X11 forwarding working.

OpenSSH commands:

• ssh - The basic rlogin/rsh-like client program.
• sshd - The daemon that permits you to login.
• ssh-agent - An authentication agent that can store private keys.
• ssh-add - Tool which adds keys to in the above agent.
• sftp - FTP-like program that works over SSH1 and SSH2 protocol.
• scp - File copy program that acts like rcp(1).
• ssh-keygen - Key generation tool.

• sftp-server - SFTP server subsystem (started automatically by sshd).
• ssh-keyscan - Utility for gathering public host keys from a number of hosts.
• ssh-keysign - Helper program for hostbased authentication.

Iptables Lab

Installation:

Install iptables rpm package from the Redhat distribution CD.
It may also be installed by default during Redhat installation.

rpm –ivh iptables-1.2.5-3.rpm

Using Iptables:

1. To view all iptables command line options:

iptables –h

2. To list all current default rules/chains:

iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

3. To set the default policies for all chains:

iptables -P INPUT DROP
iptables -P OUTPUT DROP
iptables -P FORWARD DROP

iptables -L

Chain INPUT (policy DROP)
target prot opt source destination

Chain FORWARD (policy DROP)
target prot opt source destination

Chain OUTPUT (policy DROP)
target prot opt source destination

Now, all packets will be dropped – no network traffic to/from the host
The default policy should be to DROP all packets not matched by any rules/chains.

4. To allow ping to work to/from your host to anywhere

iptables -A INPUT -p ICMP -j ACCEPT
iptables -A OUTPUT -p ICMP -j ACCEPT

List the iptables rules now:

iptables -L

Chain INPUT (policy DROP)
target prot opt source destination
ACCEPT icmp -- anywhere anywhere

Chain FORWARD (policy DROP)
target prot opt source destination

Chain OUTPUT (policy DROP)
target prot opt source destination
ACCEPT icmp -- anywhere anywhere

5. To allow ping to work only across the firewall but not to/from it:

Flush the previous FORWARD chain rules:
iptables –F FORWARD

Apply the new rule:
iptables -A FORWARD -p ICMP -j ACCEPT

List the rules now:
iptables -L --line-numbers

Chain INPUT (policy DROP)
num target prot opt source destination

Chain FORWARD (policy ACCEPT)
num target prot opt source destination
1 ACCEPT icmp -- anywhere anywhere

Chain OUTPUT (policy DROP)
num target prot opt source destination

6. To allow all internal users to access websites on the Internet:

iptables -A FORWARD -i eth1 -o eth0 -p tcp --dport 80 -j ACCEPT
iptables -A FORWARD -i eth0 -o eth1 -p tcp -m state --state
ESTABLISHED,RELATED -j ACCEPT

Note: eth0 = outside interface, eth1 = inside interface

7. To allow some external users access to SSH, SMTP, POP, HTTP, DNS servers in your internal
network:

Inbound FORWARD rules:

iptables -A FORWARD –s 202.52.250.0/24 –d 202.52.255.1 -i eth0 -o
eth1 -p tcp --dport 22 -j ACCEPT

iptables -A FORWARD –s 202.52.250.0/24 –d 202.52.255.3 -i eth0 -o
eth1 -p tcp --dport 25 -j ACCEPT

iptables -A FORWARD –s 202.52.250.0/24 –d 202.52.255.6 -i eth0 -o
eth1 -p tcp --dport 110 -j ACCEPT

iptables -A FORWARD –s 202.52.250.0/24 –d 202.52.255.35 -i eth0 -o
eth1 -p tcp --dport 80 -j ACCEPT

iptables –A FORWARD –s 202.52.250.0/24 –d 202.52.255.47 –I eth0 –o
eth1 –p udp –dport 53 –j ACCEPT

Outbound FORWARD rules:

iptables -A FORWARD –s 202.52.255.0/24 -i eth1 -o eth0 -p tcp -m
state --state ESTABLISHED,RELATED -j ACCEPT

iptables -A FORWARD –s 202.52.255.0/24 -i eth1 -o eth0 -p udp -m
state --state ESTABLISHED -j ACCEPT

8. To view all current rules with numeric addresses:ports and rule line numbers:

iptables –L –n --line-numbers

9. To save all rules/chains to /etc/sysconfig/iptables to make permanent:

service iptables save

10. To stop iptables and flush all rules:

service iptables stop

11. To start and all saved rules:

service iptables start

12. To load iptables at every system startup:

chkconfig iptables on

NAT exercises:

1. Fixed IP address mapping (inbound) - maps the public IP of a server to the private IP of
the internal server

iptables -t -nat -A PREROUTING -i eth1 -d 202.52.255.5 -j DNAT –to-
destination 192.168.0.1

2. Port mapping (inbound) - maps port 80 of host with IP 202.52.255.5 to port 8080 of the
internal host having IP 192.168.14.2

iptables -t -nat -A PREROUTING -i eth0 -d 202.52.255.5 -p tcp -m tcp
–dport 80 -j DNAT –to-destination 192.168.0.1:8080

3. IP Masquerading (outbound) - translates the source IP of all outbound packets to
202.52.255.5, the IP of eth0

iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE

4. SNAT (outbound) - The source IP of all outbound packets will be converted to
202.52.255.5

iptables -t nat -A POSTROUTING -o eth1 -s 192.168.0.0/24 -j SNAT
–to-source 202.52.255.5

5. Fixed IP mapping (outbound) - The source IP of 192.168.10.11 will be converted to
202.52.255.5 while exiting from eth0

iptables -t nat -A POSTROUTING -o eth1 -s 192.168.0.11 -j SNAT
–to-source 202.52.255.5

Snort Lab

Installation:

1. Download snort from http://www.snort.org/dl/

2. # rpm –ivh snort-1.9.0-1snort.i386.rpm

Usage:

There are three main modes in which Snort can be configured:

Sniffer, packet logger, and network intrusion detection system.

Sniffer mode simply reads the packets off of the network and displays them for you in a
continuous stream on the console.

Packet logger mode logs the packets to the disk.

Network intrusion detection mode is the most complex and configurable configurations,
allowing Snort to analyze network traffic for matches against a user defined rule set and perform
several actions based upon what it sees.

Sniffer Mode

First, let's start with the basics. If you just want to print out the TCP/IP packet headers to the
screen (i.e. sniffer mode), try this:

./snort -v

This command will run Snort and just show the IP and TCP/UDP/ICMP headers, nothing else. If
you want to see the application data in transit, try the following:

./snort -vd

This instructs Snort to display the packet data as well as the headers. If you want an even more
descriptive display, showing the data link layer headers do this:

./snort -vde

(As an aside, these switches may be divided up or smashed together in any combination. The
last command could also be typed out as:

./snort -d -v -e

and it would do the same thing.)

Packet Logger Mode

OK, all of these commands are pretty cool, but if you want to record the packets to the disk, you
need to specify a logging directory and Snort will automatically know to go into packet logger
mode:

./snort -dev -l ./log

Of course, this assumes you have a directory named "log" in the current directory. If you don't,
Snort will exit with an error message. When Snort runs in this mode, it collects every packet it
sees and places it in a directory hierarchy based upon the IP address of one of the hosts in the
datagram.

If you just specify a plain "-l" switch, you may notice that Snort sometimes uses the address of the
remote computer as the directory in which it places packets, and sometimes it uses the local host
address. In order to log relative to the home network, you need to tell Snort which network is the
home network:

./snort -dev -l ./log -h 192.168.1.0/24

This rule tells Snort that you want to print out the data link and TCP/IP headers as well as
application data into the directory ./log, and you want to log the packets relative to the
192.168.1.0 class C network. All incoming packets will be recorded into subdirectories of the log
directory, with the directory names being based on the address of the remote (non-192.168.1)
host. Note that if both hosts are on the home network, then they are recorded based upon the
higher of the two's port numbers, or in the case of a tie, the source address.
If you're on a high speed network or you want to log the packets into a more compact form for
later analysis you should consider logging in "binary mode". Binary mode logs the packets in
"tcpdump format" to a single binary file in the logging directory:

./snort -l ./log -b

Note the command line changes here. We don't need to specify a home network any longer
because binary mode logs everything into a single file, which eliminates the need to tell it how to
format the output directory structure. Additionally, you don't need to run in verbose mode or
specify the -d or -e switches because in binary mode the entire packet is logged, not just sections
of it. All that is really required to place Snort into logger mode is the specification of a logging
directory at the command line with the -l switch, the -b binary logging switch merely provides a
modifier to tell it to log the packets in something other than the default output format of plain
ASCII text.

Once the packets have been logged to the binary file, you can read the packets back out of the
file with any sniffer that supports the tcpdump binary format such as tcpdump or Ethereal. Snort
can also read the packets back by using the -r switch, which puts it into playback mode. Packets
from any tcpdump-formatted file can be processed through Snort in any of its run modes. For
example, if you wanted to run a binary log file through Snort in sniffer mode to dump the packets
to the screen, you can try something like this:

./snort -dv -r packet.log

Network Intrusion Detection Mode

To enable network intrusion detection (NIDS) mode (so that you don't record every single packet
sent down the wire), try this:

./snort -dev -l ./log -h 192.168.1.0/24 -c snort.conf

Where snort.conf is the name of your rules file. This will apply the rules set in the snort.conf file to
each packet to decide if an action based upon the rule type in the file should be taken. If you don't
specify an output directory for the program, it will default to /var/log/snort.
One thing to note about the last command line is that if Snort is going to be used in a long-term
way as IDS, the "-v" switch should be left off the command line for the sake of speed. The screen
is a slow place to write data to, and packets can be dropped while writing to the display.
It's also not necessary to record the data link headers for most applications, so it's not necessary
to specify the -e switch either.

./snort -d -h 192.168.1.0/24 -l ./log -c snort.conf

This will configure Snort to run in it's most basic NIDS form, logging packets that the rules tell it to
in plain ASCII to a hierarchical directory structure (just like packet logger mode).

NIDS Mode Output Options

There are a number of ways to configure the output of Snort in NIDS mode. The default logging
and alerting mechanisms are to log in decoded ASCII format and use "full" alerts. The full alert
mechanism prints out the alert message in addition to the full packet headers. There are several
other alert output modes available at the command line, as well as two logging facilities.
Alert modes are somewhat more complex. There are six alert modes available at the command
line, full, fast, socket, syslog, smb (WinPopup), and none. Four of these modes are accessed with
the -A command line switch. The four options are:

-A fast

fast alert mode, write the alert in a simple format with a timestamp, alert message, source
and destination IPs/ports

-A full

this is also the default alert mode, so if you specify nothing this will automatically be used

-A unsock

send alerts to a UNIX socket that another program can listen on

-A none

turn off alerting

Packets can be logged to their default decoded ASCII format or to a binary log file via the -b
command line switch. If you wish to disable packet logging all together, use the -N command line
switch.

For output modes available through the configuration file, note that command line logging options
override any output options specified in the configuration file. This allows debugging of
configuration issues quickly via the command line.

To send alerts to syslog, use the ''-s '' switch. The default facilities for the syslog alerting
mechanism are LOG_AUTHPRIV and LOG_ALERT. If you want to configure other facilities for
syslog output, use the output plugin directives in the rules files.

Finally, there is the SMB alerting mechanism. This allows Snort to make calls to the smbclient
that comes with Samba and send WinPopup alert messages to Windows machines. To use this
alerting mode, you must configure Snort to use it at configure time with the -enable-smbalerts
switch.

Here are some output configuration examples:

• Log to default (decoded ASCII) facility and send alerts to syslog

./snort -c snort.conf -l ./log -h 192.168.1.0/24

• Log to the default facility in /var/log/snort and send alerts to a fast alert file:

./snort -c snort.conf -s -h 192.168.1.0/24

• Log to a binary file and send alerts to Windows workstation:

./snort -c snort.conf -b -M WORKSTATIONS

High Performance Configuration

If you want Snort to go fast (like keep up with a 100 Mbps net fast) use the "-b" and "-A fast" or "-
s" (syslog) options. This will log packets in tcpdump format and produce minimal alerts.
For example:

./snort -b -A fast -c snort.conf

In this configuration, Snort has been able to log multiple simultaneous probes and attacks on a
100 Mbps LAN running at saturation level of approximately 80 Mbps. In this configuration, the
logs are written in binary format to the snort.log tcpdump-formatted file. To read this file back and
break out the data in the familiar Snort format, just rerun Snort on the data file with the "-r" option
and the other options you would normally use.
For example:

./snort -d -c snort.conf -l ./log -h 192.168.1.0/24 -r snort.log

Once this is done running, all of the data will be sitting in the log directory in its normal decoded
format.

Changing Alert Order

Some people don't like the default way in which Snort applies it's rules to packets. The Alert rules
applied first, then the Pass rules, and finally the Log rules. This sequence is somewhat
counterintuitive, but it's a more foolproof method than allowing the user to write a hundred alert
rules and then disable them all with an errant pass rule.

For people who know what they're doing, the "-o" switch has been provided to change the default
rule application behavior to Pass rules, then Alert, then Log:

./snort -d -h 192.168.1.0/24 -l ./log -c snort.conf -o

Miscellaneous

If you are willing to run snort in "daemon" mode, you can add -D switch to any combination
above. Please NOTICE that if you want to be able to restart snort by sending SIGHUP signal to
the daemon, you will need to use full path to snort binary, when you start it, i.g.:

/usr/local/bin/snort -d -h 192.168.1.0/24 -l \

 /var/log/snortlogs -c /usr/local/etc/snort.conf -s -D

Relative paths are not supported due to security concerns.
If you're going to be posting packet logs to public mailing lists you might want to try out the -O
switch. This switch "obfuscates" your the IP addresses in the packet printouts. This is handy if
you don't want the people on the mailing list to know the IP addresses involved. You can also
combine the -O switch with the -h switch to only obfuscate the IP addresses of hosts on the home
network. This is useful if you don't care who sees the address of the attacking host. For example:

./snort -d -v -r snort.log -O -h 192.168.1.0/24

This will read the packets from a log file and dump the packets to the screen, obfuscating only the
addresses from the 192.168.1.0/24 class C network.

Nmap Lab

Installation:

Install the nmap rpm package that comes with the RedHat CD distro or download it from
www.insecure.org/nmap or www.rpmfind.net

rpm –ivh nmap-3.00-1.i386.rpm

Usage:

1. This option scans all reserved TCP ports on the machine target.example.com . The -v
means turn on verbose mode.

nmap -v target.example.com

2. Launches a stealth SYN scan against each machine that is up out of the 255 machines on
class ´C´ where target.exam ple.com resides. It also tries to determine what operat ing system is
running on each host that is up and running. This requires root privileges because of the SYN
scan and the OS detection.

nmap -sS -O target.example.com/24

3. Sends an Xmas tree scan to the first half of each of the 255 possible 8 bit subnets in the
198.116 class ´B´ address space. We are testing whether the systems run sshd, DNS, pop3d,
mapd, or port 4564. Note that Xmas scan doesn’t work on Microsoft boxes due to their defi cient
TCP stack. Same goes with CISCO, IRIX, HP/UX, and BSDI boxes.

nmap -sX -p 22,53,110,143,4564 198.116.*.1-127

4. Rather than focus on a specific IP range, it is sometimes interesting to slice up the entire
Internet and scan a small sample from each slice. This command finds all web servers on
machines with IP addresses ending in .2.3, .2.4, or .2.5

nmap -v --randomize_hosts -p 80 ´*.*.2.3-5´

5. Launch a stealth scan with OS detection on all privileged ports against 255 hosts in the
network, output the results into the file /root/nmap.scan

nmap –sS –O 192.168.10.0/24 –oN /root/nmap.scan

6. Launch a stealth scan with OS detection on specified ports against 255 hosts in the network, in
verbose mode.

nmap –sS –O –v 192.168.10.0/24 –p ‘1-1024,1080,3128’

Nessus Lab

Installation:

Nessus is made up of two parts : a client and a server. You need a Unix-like system to use the
server (Linux is just fine). In this test, I used the standard client nessus , mainly because I wrote it
and because it is the only one that supports the cipher layer.

The Nessus Security Scanner relies on the following items:

• GTK - The Gimp Toolkit, version 1.2

GTK is a set of Widgets (like Motif) which are used by many open-sourced programs
such as The Gimp. GTK is used by the POSIX client nessus.

Download it at : ftp://ftp.gimp.org/pub/gtk/v1.2.

Note : If your system comes with GTK, make sure that you have the gtk-config program
installed. If you do not, install the gtk-devel package that should come on your distribution
CDROM.

Note #2: If you do not want to install GTK and/or if your system lacks X11, then you can
compile a command-line client by doing

./configure --disable-gtk

in nessus-core

• Nmap which is an excellent portscanner and which is available at
http://www.insecure.org/nmap/. I recommand you use Nmap 3.00 or 2.54.

• OpenSSL (optional but heavily recommended). OpenSSL is used for the client - server
communication as well as in the testing of SSL-enabled services. Get it at
http://www.openssl.org.

Nessus also comes as a standalone package that auto-installs itself.
To use it, download the script nessus -installer.sh

http://www.nessus.org/download.html

sh nessus-installer.sh

Choose the default locations to install the nessus files: /usr/local

Using Nessus:

1. Create a nessusd account

The nessusd server has its own users database, each user having a a set of restrictions.
This allows you to share a single nessusd server for a whole network and different
administrators who will only test their part of the network.

The utility nessus-adduser takes care of the creation of a new account :

nessus-adduser
Using /var/tmp as a temporary file holder

Add a new nessusd user

Login : ritesh
Authentication (pass/cert) [pass] :
Login password : nessus

User rules

nessusd has a rules system which allows you to
restrict the hosts
that ritesh has the right to test. For instance, you
may want
him to be able to scan his own host only.

Please see the nessus-adduser(8) man page for the
rules syntax

Enter the rules for this user, and hit ctrl-D once
you are done :
(the user can have an empty rules set)

 Login : ritesh
Password : nessus
DN :
Rules :

Is that ok ? (y/n) [y]
user added.

2. Configure your nessus daemon

In the file /usr/local/etc/nessus/nessusd.conf, I can set several options for nessusd.
Typically this is where you can define that you want nessusd to use your favorite
language (french for me). Anyway, I kept the standard configuration file for this
demonstration.

3. Start nessusd

Once all of this is done, I can safely start nessusd as root :

nessusd -D

4. Fire up nessus in X windows graphical environment

Click on Login, since this setup is correct. Since this is the first time connecting to this
server, it will ask the password. The next time you connect to it, the public key will be
enough.

Once connected, the Log in button changes to Log out, and a Connected label appears
at its left.

5. The security checks configuration

Let all the security check to be performed, except the Denial of Service attacks, because
you do not want hosts to crash.

Clicking on a plugin name will pop up a window explaining what the plugin does.

6. The plugins preferences

Some security checks will require extra arguments. For instance, the pop2 overflow
security test needs a valid pop account. The plugin which tests whether a FTP directory
is writeable or not asks if it should just trust the permissions or really attempt to store a
file. And so on... This screen shot shows the configuration of Nmap.

7. The scan options

Here you choose which port scanner you want to use. Prefer to use the Nmap tcp
connect scanner, since it's the fastest.

8. Define the targets

Uncheck the 'Perform a DNS transfer zone' option, since it would make DNS transfer on
fr.nessus.org and nessus.org, and it would be useless, since it would not gain any new
hosts.

Use the following options to define the targets:

192.168.1.1 A single IP address.

192.168.1.1-7 A range of IP addresses.

192.168.2.1-192.168.2.50 Another range of IP addresses.

192.168.1.1/29 Again a range of IP addresses in CIDR notation.

prof.fr.nessus.org A hostname in Full Qualified Domain Name notation.

prof A hostname (as long as it is resolvable on the server).

prof, 192.168.1.1/29, ... Any combination of the above mentioned forms

separated by a comma.

9. The rules section

The rules allow a user to restrict his test. For instance, if you want to test 192.168.1.0/29,
except 192.168.1.2. The ruleset entered allows you to do that.
Once all of this is done, start the scan…

10. The Nessus scan report

Now that the scan is over, the report window just pops up

11. Resolving the security issues

Go through the scan report and try to resolve reported security holes on the respective servers by
following the suggestions given in the report OR by referring to the vendor’s site.

