the economics of network control

Metric-Based Traffic Engineering: A Real World Study.

Arman Maghbouleh am @ cariden.com

Apricot 2004 Kuala Lumpur, Malaysia

www.cariden.com

(c) cariden technologies

Agenda

• TE Introduction

- Study Outline
 - Networks
 - Routing Models
- Results
- MPLS Notes
- Conclusion

IGP Traffic Engineering

- Manipulate Internal Routing
- Balance Traffic
 - Minimize Maximum Utilization
 - Single-Element Failure Conditions (typical)
- Save Money

TE Payback

Without TE

• Real Example

With TE

- Delay 6 OC-192 Circuits for a year (17 circuits under 50% upgrade policy)
- Capital + Operational Savings \approx \$1M/OC-192/year

Conventional Thinking

- IP Routing Not Enough Control for TE
 - Path computation using a Simple Additive Metric
 - Bandwidth availability is not taken into account
 - Metric manipulation merely shifts problem
- Need Source-Based (ATM/MPLS) for TE

Challenge to Conventional Thinking

- Scientific Advances in Metric Optimization
 - Balance traffic using SPF metrics
 - Use Equal Cost Multipath (ECMP) as necessary

Where is Reality?

Fortz et al.

"... we can find [OSPF] weight settings ...[that] get within a few percent of the best possible with general routing,including MPLS."

- (IEEE 2002)

Lorenz et al.

"Source invariant routing can be significantly worse than than per-flow routing."

- (DIMACS 2001)

"... weight setting for OSPF cannot replace MPLS as a traffic engineering tool."

- (IETF-RR list 2001)

Study Outline

- TE Introduction
- Study Outline
 - Networks
 - Routing Models
- Results
- MPLS Notes
- Conclusion

Study

- Six real networks
- Compare Efficiency
 - Optimized Metrics versus

- Optimizations
 - Objective: Minimize Maximum Utilization
 - UNDER ALL POSSIBLE SINGLE-CIRCUIT FAILURES
 - Inputs: Topology, Link Capacities, Demand Matrix
 - Outputs: Explicit Paths, or Link Metrics

Results (Preview)

www.cariden.com

Conclusions (Preview)

- Metric-Based TE Close to Optimal TE
 - Within uncertainty of demand forecasts
- Some topologies limit TE benefits
- SPF Limitations do not affect the bottom-line significantly
- Metric Optimization as alternative or complement to MPLS TE

Networks

- Tier 1, tier 2, content-delivery network
- Global, U.S., Europe
- Some already deployed MPLS
 - Measured versus estimated traffic matrix
- Five operational, one proposed
- Topologies
 - V-O-V
 - Typical U.S. Meshes
 - Global Mesh

V-O-V Networks

- High capacity simple core
- Peripheral nodes connected
 - Singly, doubly, and infrequently triply

Typical U.S. Backbone

- Three+ paths across country
- Elephants and mice demands

Plot Legend

- White squares represent sites (PoPs)
 - Small blue squares represent routers
- Lines are physical links
 - Thickness represents capacity
 - Color & fill thickness represents utilization
 - (red >90%, orange >75%)
- Blue arrows represent paths
 - (solid for normal, dashed for failure)
- X represent failure locations

Global Meshes

- No prototype shown for confidentiality
- Combinations of meshes, rings,...
 Topology bottlenecks across oceans
- Large range of capacities
 - (e.g. OC-3 to OC-192)

Routing Models

- TE Introduction
- Study Outline
 - Networks
 - Routing Models
- Results
- MPLS Notes
- Conclusion

Theoretical Optimal

- Result of multicommodity flow optimizations
 - One per failure scenario
- No shortest-path limitation
 - I.e., possibly source-based routing

Arbitrary splits of demands

Routing changed on failure

*Real case used with permission.

www.cariden.com

Shortest-Path Metric Routing

- OSPF, IS-IS
- 1/n Equal-Cost Multipath
- Use Cariden Software to determine metrics
- Single set of metrics designed for resilience

Metrics not change after failure

Explicit Routing

- A primary and secondary path for each source-destination pair
 - Link-diverse secondary
- No reservations
- Used Cariden Software to find optimal paths

Results

- TE Introduction
- Study Outline
 - Networks
 - Routing Models
- Results
- MPLS Notes
- Conclusion

Results

www.cariden.com

Results (in text)

 Can optimize SPF metrics within 80%-95% of maximum theoretical efficiency

– ... trivially at 100% for V-O-V topologies

 Explicit routing around 90-95% of theoretical limit

Outline

- Introduction
- Study Outline
 - Networks
 - Routing Models
- Results
- MPLS Notes
- Conclusion

Hybrid: SPF-Explicit

- Metric optimization + explicit routes as needed
 "We expect this is not an unreasonable approach." -Randy Bush (NANOG 26)
 - Also: Ben-Ameur et al. France Telecom, draft-wang-te-hybrid-approach-00.txt
- Few tunnels explicit if start with good metrics

*Real case used with permission.

Conclusions

- Metric-Based TE Close to Optimal TE
 - Within uncertainty of demand forecasts
- Some topologies limit TE benefits
- SPF Limitations do not affect the bottom-line significantly
- Metric Optimization as alternative or complement to MPLS TE

References

- B. Fortz, J. Rexford, and M. Thorup, "Traffic Engineering With Traditional IP Routing Protocols" in IEEE Communications Magazine, October 2002.
- D. Lorenz, A. Ordi, D. Raz, and Y. Shavitt, "How good can IP routing be?", DIMACS Technical Report 2001-17, May 2001.
- Cariden "IGP Traffic Engineering Case Study", Cariden Technologies, Inc., October 2002.
- B. Fortz and M. Thorup, "Internet traffic engineering by optimizing OSPF weights" in Proceedings of IEEE INFOCOM, March 2000.
- B. Fortz and M. Thorup, "Optimizing OSPF/IS-IS weights in a changing world" IEEE Journal on Selected Areas in Communications, volume 20, pp. 756-767, May 2002.
- L. S. Buriol, M. G. C. Resende, C. C. Ribeiro, and M. Thorup, "A memetic algorithm for OSPF routing" in Proceedings of the 6th INFORMS Telecom, pp. 187188, 2002.
- M. Ericsson, M. Resende, and P. Pardalos, "A genetic algorithm for the weight setting problem in OSPF routing" J. Combinatorial Optimization, volume 6, no. 3, pp. 299-333, 2002.
- W. Ben Ameur, N. Michel, E. Gourdin et B. Liau. Routing strategies for IP networks. Telektronikk, 2/3, pp 145-158, 2001.

Acknowledgments

- Andrew Lange (Cable & Wireless/Exodus)
- Thomas Telkamp (Global Crossing)
- Clarence Filsfils (Cisco)
- Glen Larwill (Comcast)
- Jennifer Rexford (AT&T Labs)